
Using Binary Variables to Estimate Proportions

When you compute the mean of a binary variable, it is mathematically equivalent to a proportion, Since all
the xi are equal to 0 or 1, summing them all the observations together is the same as counting the number xi

that equal to 1. The following formula for the sample mean reveals it is equal to the sample proportion

x̄ =

n∑
i=1

xi

n
= n(xi = 1)

n
,

where n(xi = 1) denotes the count for the observations in the sample that are equal to n, and the ratio
n(xi = 1)/n is exactly the proportion of a sample that is equal to 1.

Similarly, the average value from the population for a binary variable is the proportion of times the binary
variable is equal to 1 or the probability that xi = 1.

To estimate a probability of an event occurring, one can use standard statistical methods using a binary
outcome variable.

Example 1: suppose a national poll is used to measure whether or not someone is voting for the republican
candidate for president. A binary variable is set equal to 1 if the respondent said ‘yes’, they do intend to vote
for the republican candidate, and set to 0 if they intent to vote for someone else. If one wishes to estimate
the probability that the Republican candidate will win with more than 50% of the vote, we can use a simple
single sample t-test for a mean with the following hypotheses:

H0 : µ = 0.5

HA : µ > 0.5

Example 2: The data set, loanapp.RData, includes actual data from 1,989 mortgage loan applications,
including whether or not a loan was approved, and a number of possible explanatory variables including
variables related to the applicant’s ability to pay the loan such as the applicant’s income and employment
information, value of the mortgaged property, and credit history. Also included in the data set are variables
measuring the applicant’s race and ethnicity.

The code below loads the R data set, which creates a data set called data, and a list of descriptions for the
variables called desc.
download.file("http://murraylax.org/datasets/loanapp.RData", "loanapp.RData")
load("loanapp.RData")

Let us estimate the proportion of loans that were approved. The variable approve is a binary variable equal
to 1 if the loan was approved and 0 otherwise. We simply compute the mean of approved:
mean(data$approve)

## [1] 0.8773253

We can see that 87% of loan applications are approved in our sample.

Suppose someone claims that more than 85% of all mortgage loan applications are approved. We can test
this claim with a single-sample hypothesis test. The null and alternative hypotheses are given by:

H0 : µ = 0.85
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HA : µ > 0.85

We conduct the test with the t.test function:
t.test(data$approve, mu=0.85, alternative="greater")

##
## One Sample t-test
##
## data: data$approve
## t = 3.7138, df = 1988, p-value = 0.0001049
## alternative hypothesis: true mean is greater than 0.85
## 95 percent confidence interval:
## 0.8652171 Inf
## sample estimates:
## mean of x
## 0.8773253

The p-value is equal to 0.0001409 which is less than 0.05. We reject the null hypothesis and conclude we have
sufficient statistical evidence that more than 85% of loan applications are approved.

We can also compute a 95% confidence interval for the proportion of loans approved:
loantest <- t.test(data$approve, conf.level=0.05)
loantest$conf.int

## [1] 0.8768638 0.8777867
## attr(,"conf.level")
## [1] 0.05

With 95% confidence we can report an interval estimate for the average approval rate between 87.69% to
87.78%.

Example 3: Let us continue using the loan approval data set and make comparisons across different groups.

Suppose we wish to estimate whether the average approval rate is lower for self-employed people versus people
not self employed. The variable, self is a binary variable equal to 1 if the person in the observation is self
employed and zero otherwise.

Our null and alternative hypotheses are given by,

H0 : µ0 − µ1 = 0

HA : µ0 − µ1 > 0

where µ1 is the probability a self-employed person (self=1) is approved a loan and µ0 is the probability
someone who is not self-employed (self=0) is approved for a loan.

The alternative hypothesis has a greater-than sign, because our research question asks whether group 1 has
a smaller proportion than group 0. Since we are subtracting the smaller proportion, the difference will be
greater than 0.

The following call to t.test runs an independent-samples t-test for a difference in means depending on the
value for self:
t.test(approve ~ self, data=data, alternative="greater")

##
## Welch Two Sample t-test
##
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## data: approve by self
## t = 1.5811, df = 318.73, p-value = 0.05743
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## -0.001642264 Inf
## sample estimates:
## mean in group 0 mean in group 1
## 0.8822171 0.8443580

Our sample evidence shows that 88.2% of people who are not self-employed are approved for a mortgage loan
and 84.4% of self-employed people are approved.

The p-value for the hypothesis test is equal to 0.0573. This is greater than 0.05, but less than 0.1. At the 10%
significance level we can reject the null hypothesis. With 90% confidence, we can conclude that self-employed
people on average are approved less often for mortgages than others.

We can compute a 95% confidence interval for the difference in approval rates:
loantest <- t.test(approve ~ self, data=data, conf.level=0.95)
loantest$conf.int

## [1] -0.009251764 0.084969991
## attr(,"conf.level")
## [1] 0.95

With 95% confidence, the difference in approval rate for non-self-employed people versus self-employed people
is between -0.9% and 8.5%
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