Finding Relationships Among Variables

BUS 230: Business and Economic Research and Communication

・ 同 ト ・ ヨ ト ・ ヨ ト

• Specific goals:

- Re-familiarize ourselves with basic statistics ideas: sampling distributions, hypothesis tests, p-values.
- Be able to distinguish different types of data and prescribe appropriate statistical methods.
- Conduct a number of hypothesis tests using methods appropriate for questions involving only one or two variables.

• Learning objectives:

- LO2: Interpret data using statistical analysis.
- LO2.3: Formulate conclusions and recommendations based upon statistical results.

- 4 同 6 4 日 6 4 日 6

- Specific goals:
 - Re-familiarize ourselves with basic statistics ideas: sampling distributions, hypothesis tests, p-values.
 - Be able to distinguish different types of data and prescribe appropriate statistical methods.
 - Conduct a number of hypothesis tests using methods appropriate for questions involving only one or two variables.
- Learning objectives:
 - LO2: Interpret data using statistical analysis.
 - LO2.3: Formulate conclusions and recommendations based upon statistical results.

・ 同 ト ・ ヨ ト ・ ヨ ト

• There is a closed-book, closed-note quiz tomorrow.

- For each test, remember the following:
 - In plain English, be able to describe the purpose of the test.
 - Know whether the test is a parametric test or a non-parametric test.
 - Know the null and alternative hypotheses.
 - Know what types of variables are appropriate for applying the test.

・ロト ・回ト ・ヨト ・ヨト

- There is a closed-book, closed-note quiz tomorrow.
- For each test, remember the following:
 - In plain English, be able to describe the purpose of the test.
 - Know whether the test is a parametric test or a non-parametric test.
 - Know the null and alternative hypotheses.
 - Know what types of variables are appropriate for applying the test.

(不同) とうり くうり

2/20

- There is a closed-book, closed-note quiz tomorrow.
- For each test, remember the following:
 - In plain English, be able to describe the purpose of the test.
 - Know whether the test is a parametric test or a non-parametric test.
 - Know the null and alternative hypotheses.
 - Know what types of variables are appropriate for applying the test.

(不同) とうり くうり

2/ 20

- There is a closed-book, closed-note quiz tomorrow.
- For each test, remember the following:
 - In plain English, be able to describe the purpose of the test.
 - Know whether the test is a parametric test or a non-parametric test.
 - Know the null and alternative hypotheses.
 - Know what types of variables are appropriate for applying the test.

A (B) + A (B) + A (B) +

- There is a closed-book, closed-note quiz tomorrow.
- For each test, remember the following:
 - In plain English, be able to describe the purpose of the test.
 - Know whether the test is a parametric test or a non-parametric test.
 - Know the null and alternative hypotheses.
 - Know what types of variables are appropriate for applying the test.

A (B) + A (B) + A (B) +

- There is a closed-book, closed-note quiz tomorrow.
- For each test, remember the following:
 - In plain English, be able to describe the purpose of the test.
 - Know whether the test is a parametric test or a non-parametric test.
 - Know the null and alternative hypotheses.
 - Know what types of variables are appropriate for applying the test.

・ 同 ト ・ ヨ ト ・ ヨ ト

Correlation Chi-Squared Test of Independence

・ロト ・回ト ・ヨト ・ヨト

Correlation

- A correlation exists between two variables when one of them is related to the other in some way.
- The **Pearson linear correlation coefficient** is a measure of the strength of the linear relationship between two variables.
 - Parametric test!
 - Null hypothesis: there is zero linear correlation between two variables.
 - Alternative hypothesis: there is a linear correlation (either positive or negative) between two variables.
- Spearman's Rank Test
 - Non-parametric test.
 - Behind the scenes replaces actual data with their *rank*, computes the Pearson using ranks.
 - Same hypotheses.

- A correlation exists between two variables when one of them is related to the other in some way.
- The **Pearson linear correlation coefficient** is a measure of the strength of the linear relationship between two variables.

 - Alternative hypothesis: there is a linear correlation (either
- Spearman's Rank Test

3/20

・ロト ・回ト ・ヨト ・ヨト

BUS 230: Business and Economic Research and Communicatio Finding Relationships Among Variables

Correlation

• A correlation exists between two variables when one of them is related to the other in some way.

Correlation

- The **Pearson linear correlation coefficient** is a measure of the strength of the linear relationship between two variables.
 - Parametric test!
 - Null hypothesis: there is zero linear correlation between two variables.
 - Alternative hypothesis: there is a linear correlation (either positive or negative) between two variables.
- Spearman's Rank Test
 - Non-parametric test.
 - Behind the scenes replaces actual data with their *rank*, computes the Pearson using ranks.

BUS 230: Business and Economic Research and Communicatio Finding Relationships Among Variables

Correlation

• A correlation exists between two variables when one of them is related to the other in some way.

Correlation

- The **Pearson linear correlation coefficient** is a measure of the strength of the linear relationship between two variables.
 - Parametric test!
 - Null hypothesis: there is zero linear correlation between two variables.
 - Alternative hypothesis: there is a linear correlation (either positive or negative) between two variables.
- Spearman's Rank Test
 - Non-parametric test.
 - Behind the scenes replaces actual data with their *rank*, computes the Pearson using ranks.

• A correlation exists between two variables when one of them is related to the other in some way.

Correlation

- The **Pearson linear correlation coefficient** is a measure of the strength of the linear relationship between two variables.
 - Parametric test!
 - Null hypothesis: there is zero linear correlation between two variables
 - Alternative hypothesis: there is a linear correlation (either positive or negative) between two variables.
- Spearman's Rank Test

• A correlation exists between two variables when one of them is related to the other in some way.

Correlation

- The **Pearson linear correlation coefficient** is a measure of the strength of the linear relationship between two variables.
 - Parametric test!
 - Null hypothesis: there is zero linear correlation between two variables
 - Alternative hypothesis: there is a linear correlation (either positive or negative) between two variables.
- Spearman's Rank Test
 - Non-parametric test.
 - Behind the scenes replaces actual data with their rank.
 - Same hypotheses.

• A correlation exists between two variables when one of them is related to the other in some way.

Correlation

- The **Pearson linear correlation coefficient** is a measure of the strength of the linear relationship between two variables.
 - Parametric test!
 - Null hypothesis: there is zero linear correlation between two variables
 - Alternative hypothesis: there is a linear correlation (either positive or negative) between two variables.
- Spearman's Rank Test
 - Non-parametric test.
 - •
 - Same hypotheses.

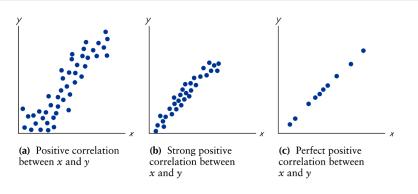
- A correlation exists between two variables when one of them is related to the other in some way.
- The **Pearson linear correlation coefficient** is a measure of the strength of the linear relationship between two variables.
 - Parametric test!
 - Null hypothesis: there is zero linear correlation between two variables
 - Alternative hypothesis: there is a linear correlation (either positive or negative) between two variables.
- Spearman's Rank Test
 - Non-parametric test.
 - Behind the scenes replaces actual data with their rank. computes the Pearson using ranks.
 - Same hypotheses.

Correlation

- A correlation exists between two variables when one of them is related to the other in some way.
- The **Pearson linear correlation coefficient** is a measure of the strength of the linear relationship between two variables.
 - Parametric test!
 - Null hypothesis: there is zero linear correlation between two variables
 - Alternative hypothesis: there is a linear correlation (either positive or negative) between two variables.
- Spearman's Rank Test
 - Non-parametric test.
 - Behind the scenes replaces actual data with their rank. computes the Pearson using ranks.
 - Same hypotheses.

Correlation Chi-Squared Test of Independence

Positive linear correlation



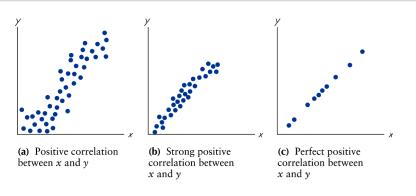
Positive correlation: two variables move in the same direction.

• Stronger the correlation: closer the correlation coefficient is to 1.

• Perfect positive correlation: $\rho = 1$

Correlation Chi-Squared Test of Independence

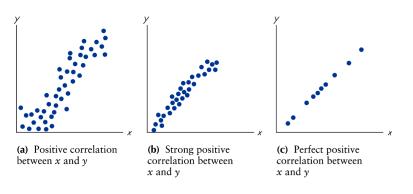
Positive linear correlation



- Positive correlation: two variables move in the same direction.
- Stronger the correlation: closer the correlation coefficient is to 1.
- Perfect positive correlation: $\rho = 1$

Correlation Chi-Squared Test of Independence

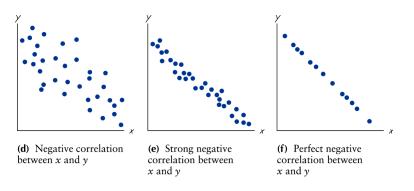
Positive linear correlation



- Positive correlation: two variables move in the same direction.
- Stronger the correlation: closer the correlation coefficient is to 1.
- Perfect positive correlation: $\rho = 1$

Correlation Chi-Squared Test of Independence

Negative linear correlation

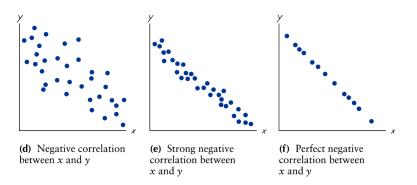


- Negative correlation: two variables move in opposite directions.
- Stronger the correlation: closer the correlation coefficient is to -1.

BUS 230: Business and Economic Research and Communicatio Finding Relationships Among Variables

Correlation Chi-Squared Test of Independence

Negative linear correlation

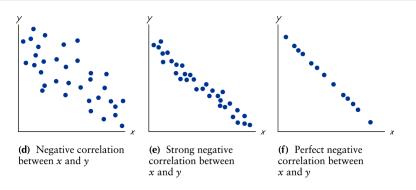


- Negative correlation: two variables move in opposite directions.
- Stronger the correlation: closer the correlation coefficient is to -1.

BUS 230: Business and Economic Research and Communicatio Finding Relationships Among Variables

Correlation Chi-Squared Test of Independence

Negative linear correlation

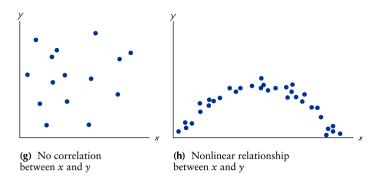


- Negative correlation: two variables move in opposite directions.
- Stronger the correlation: closer the correlation coefficient is to -1.

• Perfect negative correlation: $\rho = -1$ BUS 230: Business and Economic Research and Communicatio Finding Relationships Among Variables

Correlation Chi-Squared Test of Independence

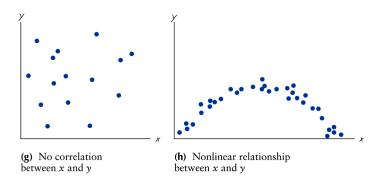
No linear correlation



- Panel (g): no relationship at all.
- Panel (h): strong relationship, but not a *linear* relationship.
 - Cannot use regular correlation to detect this.

Correlation Chi-Squared Test of Independence

No linear correlation



- Panel (g): no relationship at all.
- Panel (h): strong relationship, but not a *linear* relationship.
 - Cannot use regular correlation to detect this.

- Used to determine if two categorical variables (eg: nominal) are related.
- Example: Suppose a hotel manager surveys guest who indicate they will not return:

Reason for Not Returning

- Data in the table are always frequencies that fall into individual categories.
- Could use this table to test if two variables are independent.

- Used to determine if two categorical variables (eg: nominal) are related.
- Example: Suppose a hotel manager surveys guest who indicate they will not return:

Reason for Not Returning

(ロ) (四) (三) (三)

Reason for Stay	Price	Location	Amenities
Personal/Vacation	56	49	0
Business	20	47	27

- Data in the table are always frequencies that fall into individual categories.
- Could use this table to test if two variables are independent.

- Used to determine if two categorical variables (eg: nominal) are related.
- Example: Suppose a hotel manager surveys guest who indicate they will not return:

Reason for Not Returning

(人間) システン イラン

			-
Reason for Stay	Price	Location	Amenities
Personal/Vacation	56	49	0
Business	20	47	27

- Data in the table are always frequencies that fall into individual categories.
- Could use this table to test if two variables are independent.

- Used to determine if two categorical variables (eg: nominal) are related.
- Example: Suppose a hotel manager surveys guest who indicate they will not return:

Reason for Not Returning

Reason for Stay	Price	Location	Amenities
Personal/Vacation	56	49	0
Business	20	47	27

- Data in the table are always frequencies that fall into individual categories.
- Could use this table to test if two variables are independent.

- Used to determine if two categorical variables (eg: nominal) are related.
- Example: Suppose a hotel manager surveys guest who indicate they will not return:

Reason for Not Returning

(人間) システン イラン

Reason for Stay	Price	Location	Amenities
Personal/Vacation	56	49	0
Business	20	47	27

- Data in the table are always frequencies that fall into individual categories.
- Could use this table to test if two variables are independent.

- **Null hypothesis**: there is no relationship between the row variable and the column variable (independent)
- Alternative hypothesis: There is a relationship between the row variable and the column variable (dependent).
- Test statistic:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- O: observed frequency in a cell from the contingency table.
- *E*: expected frequency computed with the *assumption that the variables are independent*.
- Large χ^2 values indicate variables are dependent (reject the null hypothesis).

- **Null hypothesis**: there is no relationship between the row variable and the column variable (independent)
- Alternative hypothesis: There is a relationship between the row variable and the column variable (dependent).
- Test statistic:

- O: observed frequency in a cell from the contingency table.
- *E*: expected frequency computed with the *assumption that the variables are independent*.
- Large χ² values indicate variables are dependent (reject the null hypothesis).

- **Null hypothesis**: there is no relationship between the row variable and the column variable (independent)
- Alternative hypothesis: There is a relationship between the row variable and the column variable (dependent).
- Test statistic:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- O: observed frequency in a cell from the contingency table.
- *E*: expected frequency computed with the *assumption that the variables are independent*.
- Large χ^2 values indicate variables are dependent (reject the null hypothesis).

- **Null hypothesis**: there is no relationship between the row variable and the column variable (independent)
- Alternative hypothesis: There is a relationship between the row variable and the column variable (dependent).
- Test statistic:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- O: observed frequency in a cell from the contingency table.
- *E*: expected frequency computed with the *assumption that the variables are independent*.
- Large χ^2 values indicate variables are dependent (reject the null hypothesis).

- **Null hypothesis**: there is no relationship between the row variable and the column variable (independent)
- Alternative hypothesis: There is a relationship between the row variable and the column variable (dependent).
- Test statistic:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- O: observed frequency in a cell from the contingency table.
- *E*: expected frequency computed with the *assumption that the variables are independent.*
- Large χ^2 values indicate variables are dependent (reject the null hypothesis).

Test of independence

- **Null hypothesis**: there is no relationship between the row variable and the column variable (independent)
- Alternative hypothesis: There is a relationship between the row variable and the column variable (dependent).
- Test statistic:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- O: observed frequency in a cell from the contingency table.
- *E*: expected frequency computed with the *assumption that the variables are independent*.
- Large χ^2 values indicate variables are dependent (reject the null hypothesis).

- 4 同 6 4 日 6 4 日 6

Test of independence

- **Null hypothesis**: there is no relationship between the row variable and the column variable (independent)
- Alternative hypothesis: There is a relationship between the row variable and the column variable (dependent).
- Test statistic:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- O: observed frequency in a cell from the contingency table.
- *E*: expected frequency computed with the *assumption that the variables are independent*.
- Large χ^2 values indicate variables are dependent (reject the null hypothesis).

Regression

- Regression line: equation of the line that describes the linear relationship between variable *x* and variable *y*.
- Need to assume that *independent variables* influence *dependent variables*.
 - x: independent or explanatory variable.
 - y: dependent variable.
 - Variable x can influence the value for variable y, but not vice versa.

(ロ) (四) (三) (三)

Regression

- Regression line: equation of the line that describes the linear relationship between variable *x* and variable *y*.
- Need to assume that *independent variables* influence *dependent variables*.
 - x: independent or explanatory variable.
 - y: dependent variable.
 - Variable x can influence the value for variable y, but not vice versa.

(ロ) (四) (三) (三)

Regression

- Regression line: equation of the line that describes the linear relationship between variable *x* and variable *y*.
- Need to assume that *independent variables* influence *dependent variables*.
 - x: independent or explanatory variable.
 - y: dependent variable.
 - Variable x can influence the value for variable y, but not vice versa.

・ロト ・同ト ・ヨト ・ヨト

Regression

- Regression line: equation of the line that describes the linear relationship between variable *x* and variable *y*.
- Need to assume that *independent variables* influence *dependent variables*.
 - x: independent or explanatory variable.
 - y: dependent variable.
 - Variable x can influence the value for variable y, but not vice versa.

・ロト ・同ト ・ヨト ・ヨト

Regression

- Regression line: equation of the line that describes the linear relationship between variable *x* and variable *y*.
- Need to assume that *independent variables* influence *dependent variables*.
 - x: independent or explanatory variable.
 - y: dependent variable.
 - Variable x can influence the value for variable y, but not vice versa.

Regression

- Regression line: equation of the line that describes the linear relationship between variable *x* and variable *y*.
- Need to assume that *independent variables* influence *dependent variables*.
 - x: independent or explanatory variable.
 - y: dependent variable.
 - Variable x can influence the value for variable y, but not vice versa.

- 4 同 6 4 日 6 4 日 6

Regression line

• Population regression line:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- The actual coefficients β₀ and β₁ describing the relationship between x and y are unknown.
- Use sample data to come up with an estimate of the regression line:

$$y_i = b_0 + b_1 x_i + e_i$$

Regression line

• Population regression line:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- The actual coefficients β₀ and β₁ describing the relationship between x and y are unknown.
- Use sample data to come up with an estimate of the regression line:

$$y_i = b_0 + b_1 x_i + e_i$$

Regression line

• Population regression line:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- The actual coefficients β₀ and β₁ describing the relationship between x and y are unknown.
- Use sample data to come up with an estimate of the regression line:

$$y_i = b_0 + b_1 x_i + e_i$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Regression line

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

• Population regression line:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- The actual coefficients β₀ and β₁ describing the relationship between x and y are unknown.
- Use sample data to come up with an estimate of the regression line:

$$y_i = b_0 + b_1 x_i + e_i$$

Regression line

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

• Population regression line:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- The actual coefficients β₀ and β₁ describing the relationship between x and y are unknown.
- Use sample data to come up with an estimate of the regression line:

$$y_i = b_0 + b_1 x_i + e_i$$

Regression line

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

• Population regression line:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- The actual coefficients β₀ and β₁ describing the relationship between x and y are unknown.
- Use sample data to come up with an estimate of the regression line:

$$y_i = b_0 + b_1 x_i + e_i$$

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Predicted values and residuals

11/ 20

• Given a value for x_i , can come up with a **predicted value** for y_i , denoted \hat{y}_i .

 $\hat{y}_i = b_0 + b_1 x_i$

- This is not likely be the actual value for y_i .
- **Residual** is the difference *in the sample* between the actual value of y_i and the predicted value, \hat{y} .

$$e_i = y_i - \hat{y} = y_i - b_0 - b_1 x_i$$

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Predicted values and residuals

Given a value for x_i, can come up with a predicted value for y_i, denoted ŷ_i.

$$\hat{y}_i = b_0 + b_1 x_i$$

- This is not likely be the actual value for y_i.
- **Residual** is the difference *in the sample* between the actual value of y_i and the predicted value, \hat{y} .

$$e_i = y_i - \hat{y} = y_i - b_0 - b_1 x_i$$

(ロ) (四) (三) (三)

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Predicted values and residuals

• Given a value for x_i , can come up with a **predicted value** for y_i , denoted \hat{y}_i .

$$\hat{y}_i = b_0 + b_1 x_i$$

- This is not likely be the actual value for y_i.
- **Residual** is the difference *in the sample* between the actual value of y_i and the predicted value, \hat{y} .

$$e_i = y_i - \hat{y} = y_i - b_0 - b_1 x_i$$

・ロト ・同ト ・ヨト ・ヨト

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Predicted values and residuals

 Given a value for x_i, can come up with a predicted value for y_i, denoted ŷ_i.

$$\hat{y}_i = b_0 + b_1 x_i$$

- This is not likely be the actual value for y_i.
- **Residual** is the difference *in the sample* between the actual value of y_i and the predicted value, \hat{y} .

$$e_i = y_i - \hat{y} = y_i - b_0 - b_1 x_i$$

・ロト ・同ト ・ヨト ・ヨト

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Predicted values and residuals

 Given a value for x_i, can come up with a predicted value for y_i, denoted ŷ_i.

$$\hat{y}_i = b_0 + b_1 x_i$$

- This is not likely be the actual value for y_i.
- **Residual** is the difference *in the sample* between the actual value of y_i and the predicted value, \hat{y} .

$$e_i = y_i - \hat{y} = y_i - b_0 - b_1 x_i$$

・ロト ・同ト ・ヨト ・ヨト

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Multiple Regression

• Multiple regression line (population):

 $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \dots + \beta_{k-1} x_{k-1} + \epsilon_i$

• Multiple regression line (sample):

 $y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \dots + b_k x_k + e_i$

- k: number of parameters (coefficients) you are estimating.
- *ε_i*: error term, since linear relationship between the x variables
 and y are not perfect.
- *e_i*: residual = the difference between the predicted value ŷ and the actual value *y_i*.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Multiple Regression

• Multiple regression line (population):

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \dots + \beta_{k-1} x_{k-1} + \epsilon_i$$

• Multiple regression line (sample):

 $y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \dots + b_k x_k + e_i$

- k: number of parameters (coefficients) you are estimating.
- *ε_i*: error term, since linear relationship between the x variables
 and y are not perfect.
- *e_i*: residual = the difference between the predicted value ŷ and the actual value *y_i*.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Multiple Regression

• Multiple regression line (population):

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \dots + \beta_{k-1} x_{k-1} + \epsilon_i$$

• Multiple regression line (sample):

 $y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \dots + b_k x_k + e_i$

- k: number of parameters (coefficients) you are estimating.
- *ϵ_i*: error term, since linear relationship between the x variables
 and y are not perfect.
- e_i: residual = the difference between the predicted value ŷ and the actual value y_i.

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Multiple Regression

• Multiple regression line (population):

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \dots + \beta_{k-1} x_{k-1} + \epsilon_i$$

• Multiple regression line (sample):

$$y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \dots + b_k x_k + e_i$$

- k: number of parameters (coefficients) you are estimating.
- *ϵ_i*: error term, since linear relationship between the x variables
 and y are not perfect.
- e_i : residual = the difference between the predicted value \hat{y} and the actual value y_i .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Multiple Regression

• Multiple regression line (population):

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \dots + \beta_{k-1} x_{k-1} + \epsilon_i$$

• Multiple regression line (sample):

$$y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \dots + b_k x_k + e_i$$

- k: number of parameters (coefficients) you are estimating.
- *ϵ_i*: error term, since linear relationship between the x variables
 and y are not perfect.
- e_i : residual = the difference between the predicted value \hat{y} and the actual value y_i .

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Multiple Regression

• Multiple regression line (population):

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \dots + \beta_{k-1} x_{k-1} + \epsilon_i$$

• Multiple regression line (sample):

$$y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \dots + b_k x_k + e_i$$

- k: number of parameters (coefficients) you are estimating.
- *ϵ_i*: error term, since linear relationship between the x variables
 and y are not perfect.
- e_i : residual = the difference between the predicted value \hat{y} and the actual value y_i .

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Multiple Regression

• Multiple regression line (population):

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \dots + \beta_{k-1} x_{k-1} + \epsilon_i$$

• Multiple regression line (sample):

$$y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \dots + b_k x_k + e_i$$

- k: number of parameters (coefficients) you are estimating.
- *ϵ_i*: error term, since linear relationship between the x variables
 and y are not perfect.
- e_i : residual = the difference between the predicted value \hat{y} and the actual value y_i .

(ロ) (四) (三) (三)

(ロ) (四) (三) (三)

- Interpreting the slope, β: amount the y is predicted to increase when increasing x by one unit.
- When $\beta < 0$ there is a negative linear relationship.
- When $\beta > 0$ there is a positive linear relationship.
- When $\beta = 0$ there is no linear relationship between x and y.
- SPSS reports sample estimates for coefficients, along with...
 - Estimates of the standard errors.
 - T-test statistics for H_0 : $\beta = 0$.
 - P-values of the T-tests.
 - Confidence intervals for the coefficients.

(ロ) (四) (三) (三)

- Interpreting the slope, β: amount the y is predicted to increase when increasing x by one unit.
- When $\beta < 0$ there is a negative linear relationship.
- When $\beta > 0$ there is a positive linear relationship.
- When $\beta = 0$ there is no linear relationship between x and y.
- SPSS reports sample estimates for coefficients, along with...
 - Estimates of the standard errors.
 - T-test statistics for H_0 : $\beta = 0$.
 - P-values of the T-tests.
 - Confidence intervals for the coefficients.

(ロ) (四) (三) (三)

- Interpreting the slope, β: amount the y is predicted to increase when increasing x by one unit.
- When $\beta < 0$ there is a negative linear relationship.
- When $\beta > 0$ there is a positive linear relationship.
- When $\beta = 0$ there is no linear relationship between x and y.
- SPSS reports sample estimates for coefficients, along with...
 - Estimates of the standard errors.
 - T-test statistics for H_0 : $\beta = 0$.
 - P-values of the T-tests.
 - Confidence intervals for the coefficients.

イロン イヨン イヨン イヨン

- Interpreting the slope, β: amount the y is predicted to increase when increasing x by one unit.
- When $\beta < 0$ there is a negative linear relationship.
- When $\beta > 0$ there is a positive linear relationship.
- When $\beta = 0$ there is no linear relationship between x and y.
- SPSS reports sample estimates for coefficients, along with...
 - Estimates of the standard errors.
 - T-test statistics for H_0 : $\beta = 0$.
 - P-values of the T-tests.
 - Confidence intervals for the coefficients.

- Interpreting the slope, β: amount the y is predicted to increase when increasing x by one unit.
- When $\beta < 0$ there is a negative linear relationship.
- When $\beta > 0$ there is a positive linear relationship.
- When $\beta = 0$ there is no linear relationship between x and y.
- SPSS reports sample estimates for coefficients, along with...
 - Estimates of the standard errors.
 - T-test statistics for H_0 : $\beta = 0$.
 - P-values of the T-tests.
 - Confidence intervals for the coefficients.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Interpreting the slope, β: amount the y is predicted to increase when increasing x by one unit.
- When $\beta < 0$ there is a negative linear relationship.
- When $\beta > 0$ there is a positive linear relationship.
- When $\beta = 0$ there is no linear relationship between x and y.
- SPSS reports sample estimates for coefficients, along with...
 - Estimates of the standard errors.
 - T-test statistics for $H_0: \beta = 0$.
 - P-values of the T-tests.
 - Confidence intervals for the coefficients.

(ロ) (四) (三) (三)

- Interpreting the slope, β: amount the y is predicted to increase when increasing x by one unit.
- When $\beta < 0$ there is a negative linear relationship.
- When $\beta > 0$ there is a positive linear relationship.
- When $\beta = 0$ there is no linear relationship between x and y.
- SPSS reports sample estimates for coefficients, along with...
 - Estimates of the standard errors.
 - T-test statistics for $H_0: \beta = 0$.
 - P-values of the T-tests.
 - Confidence intervals for the coefficients.

(ロ) (四) (三) (三)

- Interpreting the slope, β: amount the y is predicted to increase when increasing x by one unit.
- When $\beta < 0$ there is a negative linear relationship.
- When $\beta > 0$ there is a positive linear relationship.
- When $\beta = 0$ there is no linear relationship between x and y.
- SPSS reports sample estimates for coefficients, along with...
 - Estimates of the standard errors.
 - T-test statistics for $H_0: \beta = 0$.
 - P-values of the T-tests.
 - Confidence intervals for the coefficients.

・ロト ・同ト ・ヨト ・ヨト

- Interpreting the slope, β: amount the y is predicted to increase when increasing x by one unit.
- When $\beta < 0$ there is a negative linear relationship.
- When $\beta > 0$ there is a positive linear relationship.
- When $\beta = 0$ there is no linear relationship between x and y.
- SPSS reports sample estimates for coefficients, along with...
 - Estimates of the standard errors.
 - T-test statistics for $H_0: \beta = 0$.
 - P-values of the T-tests.
 - Confidence intervals for the coefficients.

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Sum of Squares Measures of Variation

14/20

• Sum of Squares Regression (SSR): measure of the amount of variability in the dependent (Y) variable that is explained by the independent variables (X's).

• Sum of Squares Error (SSE): measure of the unexplained variability in the dependent variable.

・ロン ・回 と ・ ヨン ・ ヨン

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Sum of Squares Measures of Variation

14/20

• Sum of Squares Regression (SSR): measure of the amount of variability in the dependent (Y) variable that is explained by the independent variables (X's).

$$SSR = \sum_{i=1}^{n} \left(\hat{y}_i - \bar{y} \right)^2$$

• Sum of Squares Error (SSE): measure of the unexplained variability in the dependent variable.

$$SSE = \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right)^2$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Sum of Squares Measures of Variation

- 14/20
- Sum of Squares Regression (SSR): measure of the amount of variability in the dependent (Y) variable that is explained by the independent variables (X's).

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

• Sum of Squares Error (SSE): measure of the unexplained variability in the dependent variable.

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Sum of Squares Measures of Variation

- 14/20
- Sum of Squares Regression (SSR): measure of the amount of variability in the dependent (Y) variable that is explained by the independent variables (X's).

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

• Sum of Squares Error (SSE): measure of the unexplained variability in the dependent variable.

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

・ロト ・ 同ト ・ ヨト ・ ヨト

Sum of Squares Measures of Variation

15/20

• Sum of Squares Total (SST): measure of the total variability in the dependent variable.

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

• SST = SSR + SSE.

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

・ロト ・ 同ト ・ ヨト ・ ヨト

Sum of Squares Measures of Variation

15/20

• Sum of Squares Total (SST): measure of the total variability in the dependent variable.

$$SST = \sum_{i=1}^{n} \left(y_i - \bar{y} \right)^2$$

• SST = SSR + SSE.

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

(人間) (人) (人) (人)

Sum of Squares Measures of Variation

15/20

• Sum of Squares Total (SST): measure of the total variability in the dependent variable.

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

• SST = SSR + SSE.

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

- R^2 will always be between 0 and 1. The closer R^2 is to 1, the better x is able to explain y.
- The more variables you add to the regression, the higher R^2 will be.

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

(ロ) (四) (三) (三)

$$R^2 = \frac{SSR}{SST}$$

- R^2 will always be between 0 and 1. The closer R^2 is to 1, the better x is able to explain y.
- The more variables you add to the regression, the higher R^2 will be.

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

(ロ) (四) (三) (三)

$$R^2 = \frac{SSR}{SST}$$

- R^2 will always be between 0 and 1. The closer R^2 is to 1, the better x is able to explain y.
- The more variables you add to the regression, the higher *R*² will be.

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

$$R^2 = \frac{SSR}{SST}$$

- R^2 will always be between 0 and 1. The closer R^2 is to 1, the better x is able to explain y.
- The more variables you add to the regression, the higher R^2 will be.

Adjusted R^2

- R^2 will likely increase (slightly) even by adding nonsense variables.
- Adding such variables increases in-sample fit, but will likely hurt out-of-sample forecasting accuracy.
- The Adjusted R^2 penalizes R^2 for additional variables.

$$R_{adj}^2 = 1 - \frac{n-1}{n-k-1} \left(1 - R^2\right)$$

- When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.
- When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.

- R^2 will likely increase (slightly) even by adding nonsense variables.
- Adding such variables increases in-sample fit, but will likely hurt out-of-sample forecasting accuracy.
- The Adjusted R^2 penalizes R^2 for additional variables.

$$R_{adj}^2 = 1 - \frac{n-1}{n-k-1} \left(1 - R^2\right)$$

- When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.
- When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.

- R^2 will likely increase (slightly) even by adding nonsense variables.
- Adding such variables increases in-sample fit, but will likely hurt out-of-sample forecasting accuracy.
- The Adjusted R^2 penalizes R^2 for additional variables.

$$R_{adj}^2 = 1 - \frac{n-1}{n-k-1} (1-R^2)$$

- When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.
- When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.

- R^2 will likely increase (slightly) even by adding nonsense variables.
- Adding such variables increases in-sample fit, but will likely hurt out-of-sample forecasting accuracy.
- The Adjusted R^2 penalizes R^2 for additional variables.

$$R_{adj}^2 = 1 - \frac{n-1}{n-k-1} (1-R^2)$$

- When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.
- When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.

- R^2 will likely increase (slightly) even by adding nonsense variables.
- Adding such variables increases in-sample fit, but will likely hurt out-of-sample forecasting accuracy.
- The Adjusted R^2 penalizes R^2 for additional variables.

$$R_{adj}^2 = 1 - \frac{n-1}{n-k-1} (1-R^2)$$

- When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.
- When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.

- R^2 will likely increase (slightly) even by adding nonsense variables.
- Adding such variables increases in-sample fit, but will likely hurt out-of-sample forecasting accuracy.
- The Adjusted R^2 penalizes R^2 for additional variables.

$$R_{adj}^2 = 1 - \frac{n-1}{n-k-1} (1-R^2)$$

- When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.
- When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.

F-test for Regression Fit

- F-test for Regression Fit: Tests if the regression line explains the data.
- Very, very, very similar to ANOVA F-test.
- $H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0.$
- *H*₁ : At least one of the variables has explanatory power (i.e. at least one coefficient is not equal to zero).

$$F = \frac{SSR/(k-1)}{SSE/(n-k)}$$

F-test for Regression Fit

- F-test for Regression Fit: Tests if the regression line explains the data.
- Very, very, very similar to ANOVA F-test.
- $H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0.$
- *H*₁ : At least one of the variables has explanatory power (i.e. at least one coefficient is not equal to zero).

$$F = \frac{SSR/(k-1)}{SSE/(n-k)}$$

・ロト ・回ト ・ヨト ・ヨト

F-test for Regression Fit

- F-test for Regression Fit: Tests if the regression line explains the data.
- Very, very, very similar to ANOVA F-test.

•
$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0.$$

• *H*₁ : At least one of the variables has explanatory power (i.e. at least one coefficient is not equal to zero).

$$F = \frac{SSR/(k-1)}{SSE/(n-k)}$$

F-test for Regression Fit

- F-test for Regression Fit: Tests if the regression line explains the data.
- Very, very, very similar to ANOVA F-test.
- $H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0.$
- *H*₁ : At least one of the variables has explanatory power (i.e. at least one coefficient is not equal to zero).

$$F = \frac{SSR/(k-1)}{SSE/(n-k)}$$

(ロ) (四) (三) (三)

F-test for Regression Fit

- F-test for Regression Fit: Tests if the regression line explains the data.
- Very, very, very similar to ANOVA F-test.

•
$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0.$$

• *H*₁ : At least one of the variables has explanatory power (i.e. at least one coefficient is not equal to zero).

$$F = \frac{SSR/(k-1)}{SSE/(n-k)}$$

(ロ) (四) (三) (三)

F-test for Regression Fit

- F-test for Regression Fit: Tests if the regression line explains the data.
- Very, very, very similar to ANOVA F-test.
- $H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0.$
- *H*₁ : At least one of the variables has explanatory power (i.e. at least one coefficient is not equal to zero).

$$F = \frac{SSR/(k-1)}{SSE/(n-k)}$$

・ロト ・回ト ・ヨト ・ヨト

Assumptions from the CLT

- Using the normal distribution to compute p-values depends on results from the Central Limit Theorem.
- Sufficiently large sample size (much more than 30).
 - Useful for normality result from the Central Limit Theorem
 - Also necessary as you increase the number of explanatory variables.
- Normally distributed dependent and independent variables
 - Useful for small sample sizes, but not essential as sample size increases.

(ロ) (四) (三) (三)

- Types of data:
 - Dependent variable must be interval or ratio.
 - Independent variable can be interval, ratio, *or a dummy variable*.

19/ 20

Assumptions from the CLT

- Using the normal distribution to compute p-values depends on results from the Central Limit Theorem.
- Sufficiently large sample size (much more than 30).
 - Useful for normality result from the Central Limit Theorem
 - Also necessary as you increase the number of explanatory variables.
- Normally distributed dependent and independent variables
 - Useful for small sample sizes, but not essential as sample size increases.

- Types of data:
 - Dependent variable must be interval or ratio.
 - Independent variable can be interval, ratio, *or a dummy variable*.

Assumptions from the CLT

- Using the normal distribution to compute p-values depends on results from the Central Limit Theorem.
- Sufficiently large sample size (much more than 30).
 - Useful for normality result from the Central Limit Theorem
 - Also necessary as you increase the number of explanatory variables.
- Normally distributed dependent and independent variables
 - Useful for small sample sizes, but not essential as sample size increases.

- Types of data:
 - Dependent variable must be interval or ratio.
 - Independent variable can be interval, ratio, *or a dummy variable*.

Assumptions from the CLT

- Using the normal distribution to compute p-values depends on results from the Central Limit Theorem.
- Sufficiently large sample size (much more than 30).
 - Useful for normality result from the Central Limit Theorem
 - Also necessary as you increase the number of explanatory variables.
- Normally distributed dependent and independent variables
 Useful for small sample sizes, but not essential as sample size increases.
- Types of data:
 - Dependent variable must be interval or ratio.
 - Independent variable can be interval, ratio, *or a dummy variable*.

Assumptions from the CLT

- Using the normal distribution to compute p-values depends on results from the Central Limit Theorem.
- Sufficiently large sample size (much more than 30).
 - Useful for normality result from the Central Limit Theorem
 - Also necessary as you increase the number of explanatory variables.
- Normally distributed dependent and independent variables
 - Useful for small sample sizes, but not essential as sample size increases.

- Types of data:
 - Dependent variable must be interval or ratio.
 - Independent variable can be interval, ratio, *or a dummy variable*.

Assumptions from the CLT

- Using the normal distribution to compute p-values depends on results from the Central Limit Theorem.
- Sufficiently large sample size (much more than 30).
 - Useful for normality result from the Central Limit Theorem
 - Also necessary as you increase the number of explanatory variables.
- Normally distributed dependent and independent variables
 - Useful for small sample sizes, but not essential as sample size increases.

- Types of data:
 - Dependent variable must be interval or ratio.
 - Independent variable can be interval, ratio, *or a dummy variable*.

Assumptions from the CLT

- Using the normal distribution to compute p-values depends on results from the Central Limit Theorem.
- Sufficiently large sample size (much more than 30).
 - Useful for normality result from the Central Limit Theorem
 - Also necessary as you increase the number of explanatory variables.
- Normally distributed dependent and independent variables
 - Useful for small sample sizes, but not essential as sample size increases.

< ロ > < 同 > < 三 > < 三 >

- Types of data:
 - Dependent variable must be interval or ratio.
 - Independent variable can be interval, ratio, *or a dummy variable*.

Single Variable Regression Multiple Regression Variance Decomposition Regression Assumptions

Crucial Assumptions for Regression

20/20

• Linearity: a straight line reasonably describes the data.

- Exceptions: experience on productivity, ordinal data like education level on income.
- Consider transforming variables.
- Stationarity:
 - The central limit theorem: behavior of statistics as sample size approaches infinity!
 - The mean and variance must exist and be constant.
 - Big issue in economic and financial time series.
- Exogeneity of explanatory variables.
 - Dependent variable must not influence explanatory variables.

- Explanatory variables must not be influenced by excluded variables that can influence dependent variable.
- Example problem: how does advertising affect sales?

Crucial Assumptions for Regression

20/20

- Linearity: a straight line reasonably describes the data.
 - Exceptions: experience on productivity, ordinal data like education level on income.
 - Consider transforming variables.
- Stationarity:
 - The central limit theorem: behavior of statistics as sample size approaches infinity!
 - The mean and variance must exist and be constant.
 - Big issue in economic and financial time series.
- Exogeneity of explanatory variables.
 - Dependent variable must not influence explanatory variables.

- Explanatory variables must not be influenced by excluded variables that can influence dependent variable.
- Example problem: how does advertising affect sales?

Crucial Assumptions for Regression

 $20/\ 20$

- Linearity: a straight line reasonably describes the data.
 - Exceptions: experience on productivity, ordinal data like education level on income.
 - Consider transforming variables.
- Stationarity:
 - The central limit theorem: behavior of statistics as sample size approaches infinity!
 - The mean and variance must exist and be constant.
 - Big issue in economic and financial time series.
- Exogeneity of explanatory variables.
 - Dependent variable must not influence explanatory variables.

(日)
 (日)

- Explanatory variables must not be influenced by excluded variables that can influence dependent variable.
- Example problem: how does advertising affect sales?

Crucial Assumptions for Regression

20/20

- Linearity: a straight line reasonably describes the data.
 - Exceptions: experience on productivity, ordinal data like education level on income.
 - Consider transforming variables.
- Stationarity:
 - The central limit theorem: behavior of statistics as sample size approaches infinity!
 - The mean and variance must exist and be constant.
 - Big issue in economic and financial time series.
- Exogeneity of explanatory variables.
 - Dependent variable must not influence explanatory variables.

(ロ) (同) (E) (E)

- Explanatory variables must not be influenced by excluded variables that can influence dependent variable.
- Example problem: how does advertising affect sales?

Crucial Assumptions for Regression

20/20

- Linearity: a straight line reasonably describes the data.
 - Exceptions: experience on productivity, ordinal data like education level on income.
 - Consider transforming variables.
- Stationarity:
 - The central limit theorem: behavior of statistics as sample size approaches infinity!
 - The mean and variance must exist and be constant.
 - Big issue in economic and financial time series.
- Exogeneity of explanatory variables.
 - Dependent variable must not influence explanatory variables.

イロン イロン イヨン イヨン

- Explanatory variables must not be influenced by excluded variables that can influence dependent variable.
- Example problem: how does advertising affect sales?

Crucial Assumptions for Regression

20/20

- Linearity: a straight line reasonably describes the data.
 - Exceptions: experience on productivity, ordinal data like education level on income.
 - Consider transforming variables.
- Stationarity:
 - The central limit theorem: behavior of statistics as sample size approaches infinity!
 - The mean and variance must exist and be constant.
 - Big issue in economic and financial time series.
- Exogeneity of explanatory variables.
 - Dependent variable must not influence explanatory variables.

イロン イロン イヨン イヨン

- Explanatory variables must not be influenced by excluded variables that can influence dependent variable.
- Example problem: how does advertising affect sales?

Crucial Assumptions for Regression

20/20

- Linearity: a straight line reasonably describes the data.
 - Exceptions: experience on productivity, ordinal data like education level on income.
 - Consider transforming variables.
- Stationarity:
 - The central limit theorem: behavior of statistics as sample size approaches infinity!
 - The mean and variance must exist and be constant.
 - Big issue in economic and financial time series.
- Exogeneity of explanatory variables.
 - Dependent variable must not influence explanatory variables.

イロン イロン イヨン イヨン

- Explanatory variables must not be influenced by excluded variables that can influence dependent variable.
- Example problem: how does advertising affect sales?

Crucial Assumptions for Regression

20/20

- Linearity: a straight line reasonably describes the data.
 - Exceptions: experience on productivity, ordinal data like education level on income.
 - Consider transforming variables.
- Stationarity:
 - The central limit theorem: behavior of statistics as sample size approaches infinity!
 - The mean and variance must exist and be constant.
 - Big issue in economic and financial time series.
- Exogeneity of explanatory variables.
 - Dependent variable must not influence explanatory variables.

- Explanatory variables must not be influenced by excluded variables that can influence dependent variable.
- Example problem: how does advertising affect sales?

Crucial Assumptions for Regression

20/20

- Linearity: a straight line reasonably describes the data.
 - Exceptions: experience on productivity, ordinal data like education level on income.
 - Consider transforming variables.
- Stationarity:
 - The central limit theorem: behavior of statistics as sample size approaches infinity!
 - The mean and variance must exist and be constant.
 - Big issue in economic and financial time series.
- Exogeneity of explanatory variables.
 - Dependent variable must not influence explanatory variables.

- Explanatory variables must not be influenced by excluded variables that can influence dependent variable.
- Example problem: how does advertising affect sales?

Crucial Assumptions for Regression

20/20

- Linearity: a straight line reasonably describes the data.
 - Exceptions: experience on productivity, ordinal data like education level on income.
 - Consider transforming variables.
- Stationarity:
 - The central limit theorem: behavior of statistics as sample size approaches infinity!
 - The mean and variance must exist and be constant.
 - Big issue in economic and financial time series.
- Exogeneity of explanatory variables.
 - Dependent variable must not influence explanatory variables.

((日)) (日) (日)

- Explanatory variables must not be influenced by excluded variables that can influence dependent variable.
- Example problem: how does advertising affect sales?

Crucial Assumptions for Regression

20/20

- Linearity: a straight line reasonably describes the data.
 - Exceptions: experience on productivity, ordinal data like education level on income.
 - Consider transforming variables.
- Stationarity:
 - The central limit theorem: behavior of statistics as sample size approaches infinity!
 - The mean and variance must exist and be constant.
 - Big issue in economic and financial time series.
- Exogeneity of explanatory variables.
 - Dependent variable must not influence explanatory variables.

- 4 同 ト 4 ヨ ト 4 ヨ ト

- Explanatory variables must not be influenced by excluded variables that can influence dependent variable.
- Example problem: how does advertising affect sales?