Finding Relationships Among Variables

BUS 230: Business and Economic Research and Communication

1

Goals

• Specific goals:
 – Re-familiarize ourselves with basic statistics ideas: sampling distributions, hypothesis tests, p-values.
 – Be able to distinguish different types of data and prescribe appropriate statistical methods.
 – Conduct a number of hypothesis tests using methods appropriate for questions involving only one or two variables.

• Learning objectives:
 – LO2: Interpret data using statistical analysis.
 – LO2.3: Formulate conclusions and recommendations based upon statistical results.

What to Look For

• There is a closed-book, closed-note quiz tomorrow.

• For each test, remember the following:
 – In plain English, be able to describe the purpose of the test.
 – Know whether the test is a parametric test or a non-parametric test.
 – Know the null and alternative hypotheses.
 – Know what types of variables are appropriate for applying the test.

2 Relationships Between Two Variables

2.1 Correlation

Correlation
• A **correlation** exists between two variables when one of them is related to the other in some way.

• The **Pearson linear correlation coefficient** is a measure of the strength of the linear relationship between two variables.

 – Parametric test!

 – Null hypothesis: there is zero linear correlation between two variables.

 – Alternative hypothesis: there is a linear correlation (either positive or negative) between two variables.

• **Spearman’s Rank Test**

 – Non-parametric test.

 – Behind the scenes - replaces actual data with their rank, computes the Pearson using ranks.

 – Same hypotheses.

Positive linear correlation

- Positive correlation: two variables move in the same direction.
- Stronger the correlation: closer the correlation coefficient is to 1.
- Perfect positive correlation: $\rho = 1$

Negative linear correlation
• Negative correlation: two variables move in opposite directions.
• Stronger the correlation: closer the correlation coefficient is to -1.
• Perfect negative correlation: $\rho = -1$

No linear correlation

• Panel (g): no relationship at all.
• Panel (h): strong relationship, but not a linear relationship.
 – Cannot use regular correlation to detect this.

2.2 Chi-Squared Test of Independence

Chi-Squared Test for Independence

• Used to determine if two categorical variables (eg: nominal) are related.
• Example: Suppose a hotel manager surveys guest who indicate they will not return

<table>
<thead>
<tr>
<th>Reason for Not Returning</th>
<th>Price</th>
<th>Location</th>
<th>Amenities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal/Vacation</td>
<td>56</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>Business</td>
<td>20</td>
<td>47</td>
<td>27</td>
</tr>
</tbody>
</table>
• Data in the table are always frequencies that fall into individual categories.
• Could use this table to test if two variables are independent.

Test of independence

• **Null hypothesis**: there is no relationship between the row variable and the column variable (independent)
• **Alternative hypothesis**: There is a relationship between the row variable and the column variable (dependent).

Test statistic:

\[\chi^2 = \sum \frac{(O - E)^2}{E} \]

• **O**: observed frequency in a cell from the contingency table.
• **E**: expected frequency computed with the *assumption that the variables are independent*.
• Large \(\chi^2 \) values indicate variables are dependent (reject the null hypothesis).

3 Regression

3.1 Single Variable Regression

Regression

• Regression line: equation of the line that describes the linear relationship between variable \(x \) and variable \(y \).
• Need to assume that *independent variables* influence *dependent variables*.
 - \(x \): *independent* or *explanatory* variable.
 - \(y \): *dependent* variable.
 - Variable \(x \) can influence the value for variable \(y \), but not vice versa.
• Example: How does advertising expenditures affect sales revenue?

Regression line

• Population regression line:

\[y_i = \beta_0 + \beta_1 x_i + \epsilon_i \]

• The actual coefficients \(\beta_0 \) and \(\beta_1 \) describing the relationship between \(x \) and \(y \) are unknown.
• Use sample data to come up with an estimate of the regression line:
 \[y_i = b_0 + b_1 x_i + e_i \]
• Since \(x \) and \(y \) are not perfectly correlated, still need to have an error term.

Predicted values and residuals
• Given a value for \(x_i \), can come up with a **predicted value** for \(y_i \), denoted \(\hat{y}_i \).
 \[\hat{y}_i = b_0 + b_1 x_i \]
• This is not likely be the actual value for \(y_i \).
• **Residual** is the difference *in the sample* between the actual value of \(y_i \) and the predicted value, \(\hat{y} \).
 \[e_i = y_i - \hat{y} = y_i - b_0 - b_1 x_i \]

3.2 Multiple Regression

Multiple Regression
• Multiple regression line (population):
 \[y_i = \beta_0 + \beta_{1, i} + \beta_{2} + \ldots + \beta_{k-1} x_{k-1} + \epsilon_i \]
• Multiple regression line (sample):
 \[y_i = b_0 + b_{1, i} + b_2 x_2 + \ldots + b_k x_k + e_i \]
 - \(k \): number of parameters (coefficients) you are estimating.
 - \(\epsilon_i \): error term, since linear relationship between the \(x \) variables and \(y \) are not perfect.
 - \(e_i \): residual = the difference between the predicted value \(\hat{y} \) and the actual value \(y_i \).

Interpreting the slope
• Interpreting the slope, \(\beta \): amount the \(y \) is predicted to increase when increasing \(x \) by one unit.
• When \(\beta < 0 \) there is a negative linear relationship.
• When \(\beta > 0 \) there is a positive linear relationship.
• When \(\beta = 0 \) there is no linear relationship between \(x \) and \(y \).
• SPSS reports sample estimates for coefficients, along with...
 - Estimates of the standard errors.
 - T-test statistics for \(H_0 : \beta = 0 \).
 - P-values of the T-tests.
 - Confidence intervals for the coefficients.
3.3 Variance Decomposition

Sum of Squares Measures of Variation

- **Sum of Squares Regression (SSR)**: measure of the amount of variability in the dependent (Y) variable that is explained by the independent variables (X’s).

 \[
 SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2
 \]

- **Sum of Squares Error (SSE)**: measure of the unexplained variability in the dependent variable.

 \[
 SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
 \]

Sum of Squares Measures of Variation

- **Sum of Squares Total (SST)**: measure of the total variability in the dependent variable.

 \[
 SST = \sum_{i=1}^{n} (y_i - \bar{y})^2
 \]

- **SST = SSR + SSE.**

Coefficient of determination

- The **coefficient of determination** is the percentage of variability in \(y\) that is explained by \(x\).

 \[
 R^2 = \frac{SSR}{SST}
 \]

- \(R^2\) will always be between 0 and 1. The closer \(R^2\) is to 1, the better \(x\) is able to explain \(y\).

- The more variables you add to the regression, the higher \(R^2\) will be.

Adjusted \(R^2\)

- \(R^2\) will likely increase (slightly) even by adding nonsense variables.

- Adding such variables increases in-sample fit, but will likely hurt out-of-sample forecasting accuracy.

- The Adjusted \(R^2\) penalizes \(R^2\) for additional variables.

 \[
 R^2_{\text{adj}} = 1 - \frac{n - 1}{n - k - 1} (1 - R^2)
 \]
• When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.

• When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.

F-test for Regression Fit

• F-test for Regression Fit: Tests if the regression line explains the data.

• Very, very, very similar to ANOVA F-test.

• $H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$.

• H_1: At least one of the variables has explanatory power (i.e. at least one coefficient is not equal to zero).

$$F = \frac{SSR/(k - 1)}{SSE/(n - k)}$$

• Where k is the number of explanatory variables.

3.4 Regression Assumptions

Assumptions from the CLT

• Using the normal distribution to compute p-values depends on results from the Central Limit Theorem.

• Sufficiently large sample size (much more than 30).

 – Useful for normality result from the Central Limit Theorem

 – Also necessary as you increase the number of explanatory variables.

• Normally distributed dependent and independent variables

 – Useful for small sample sizes, but not essential as sample size increases.

• Types of data:

 – Dependent variable must be interval or ratio.

 – Independent variable can be interval, ratio, or a dummy variable.
Crucial Assumptions for Regression

- **Linearity:** a straight line reasonably describes the data.
 - Exceptions: experience on productivity, ordinal data like education level on income.
 - Consider transforming variables.

- **Stationarity:**
 - The central limit theorem: behavior of statistics as sample size approaches infinity!
 - The mean and variance must exist and be constant.
 - Big issue in economic and financial time series.

- **Exogeneity of explanatory variables.**
 - Dependent variable must not influence explanatory variables.
 - Explanatory variables must not be influenced by excluded variables that can influence dependent variable.
 - Example problem: how does advertising affect sales?