
Finding Relationships Among Variables

BUS 230: Business and Economic Research and Communication
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Goals

• Specific goals:

– Re-familiarize ourselves with basic statistics ideas: sampling distri-
butions, hypothesis tests, p-values.

– Be able to distinguish different types of data and prescribe appropri-
ate statistical methods.

– Conduct a number of hypothesis tests using methods appropriate for
questions involving only one or two variables.

• Learning objectives:

– LO2: Interpret data using statistical analysis.

– LO2.3: Formulate conclusions and recommendations based upon sta-
tistical results.

What to Look For

• There is a closed-book, closed-note quiz tomorrow.

• For each test, remember the following:

– In plain English, be able to describe the purpose of the test.

– Know whether the test is a parametric test or a non-parametric test.

– Know the null and alternative hypotheses.

– Know what types of variables are appropriate for applying the test.

2 Relationships Between Two Variables

2.1 Correlation

Correlation
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• A correlation exists between two variables when one of them is related
to the other in some way.

• The Pearson linear correlation coefficient is a measure of the strength
of the linear relationship between two variables.

– Parametric test!

– Null hypothesis: there is zero linear correlation between two vari-
ables.

– Alternative hypothesis: there is a linear correlation (either positive
or negative) between two variables.

• Spearman’s Rank Test

– Non-parametric test.

– Behind the scenes - replaces actual data with their rank, computes
the Pearson using ranks.

– Same hypotheses.

Positive linear correlation

• Positive correlation: two variables move in the same direction.

• Stronger the correlation: closer the correlation coefficient is to 1.

• Perfect positive correlation: ρ = 1

Negative linear correlation
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• Negative correlation: two variables move in opposite directions.

• Stronger the correlation: closer the correlation coefficient is to -1.

• Perfect negative correlation: ρ = −1

No linear correlation

• Panel (g): no relationship at all.

• Panel (h): strong relationship, but not a linear relationship.

– Cannot use regular correlation to detect this.

2.2 Chi-Squared Test of Independence

Chi-Squared Test for Independence

• Used to determine if two categorical variables (eg: nominal) are related.

• Example: Suppose a hotel manager surveys guest who indicate they will

not return:

Reason for Not Returning
Reason for Stay Price Location Amenities
Personal/Vacation 56 49 0
Business 20 47 27
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• Data in the table are always frequencies that fall into individual categories.

• Could use this table to test if two variables are independent.

Test of independence

• Null hypothesis: there is no relationship between the row variable and
the column variable (independent)

• Alternative hypothesis: There is a relationship between the row vari-
able and the column variable (dependent).

• Test statistic:

χ2 =
∑ (O − E)

2

E

• O: observed frequency in a cell from the contingency table.

• E: expected frequency computed with the assumption that the variables
are independent.

• Large χ2 values indicate variables are dependent (reject the null hypoth-
esis).

3 Regression

3.1 Single Variable Regression

Regression

• Regression line: equation of the line that describes the linear relationship
between variable x and variable y.

• Need to assume that independent variables influence dependent variables.

– x: independent or explanatory variable.

– y: dependent variable.

– Variable x can influence the value for variable y, but not vice versa.

• Example: How does advertising expenditures affect sales revenue?

Regression line

• Population regression line:

yi = β0 + β1xi + εi

• The actual coefficients β0 and β1 describing the relationship between x
and y are unknown.
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• Use sample data to come up with an estimate of the regression line:

yi = b0 + b1xi + ei

• Since x and y are not perfectly correlated, still need to have an error term.

Predicted values and residuals

• Given a value for xi, can come up with a predicted value for yi, denoted
ŷi.

ŷi = b0 + b1xi

• This is not likely be the actual value for yi.

• Residual is the difference in the sample between the actual value of yi
and the predicted value, ŷ.

ei = yi − ŷ = yi − b0 − b1xi

3.2 Multiple Regression

Multiple Regression

• Multiple regression line (population):

yi = β0 + β1x1,i + β2x2 + ...+ βk−1xk−1 + εi

• Multiple regression line (sample):

yi = b0 + b1x1,i + b2x2 + ...+ bkxk + ei

– k: number of parameters (coefficients) you are estimating.

– εi: error term, since linear relationship between the x variables and
y are not perfect.

– ei: residual = the difference between the predicted value ŷ and the
actual value yi.

Interpreting the slope

• Interpreting the slope, β: amount the y is predicted to increase when
increasing x by one unit.

• When β < 0 there is a negative linear relationship.

• When β > 0 there is a positive linear relationship.

• When β = 0 there is no linear relationship between x and y.

• SPSS reports sample estimates for coefficients, along with...

– Estimates of the standard errors.

– T-test statistics for H0 : β = 0.

– P-values of the T-tests.

– Confidence intervals for the coefficients.
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3.3 Variance Decomposition

Sum of Squares Measures of Variation

• Sum of Squares Regression (SSR): measure of the amount of vari-
ability in the dependent (Y) variable that is explained by the independent
variables (X’s).

SSR =

n∑
i=1

(ŷi − ȳ)
2

• Sum of Squares Error (SSE): measure of the unexplained variability
in the dependent variable.

SSE =

n∑
i=1

(yi − ŷi)
2

Sum of Squares Measures of Variation

• Sum of Squares Total (SST): measure of the total variability in the
dependent variable.

SST =

n∑
i=1

(yi − ȳ)
2

• SST = SSR + SSE.

Coefficient of determination

• The coefficient of determination is the percentage of variability in y
that is explained by x.

R2 =
SSR

SST

• R2 will always be between 0 and 1. The closer R2 is to 1, the better x is
able to explain y.

• The more variables you add to the regression, the higher R2 will be.

Adjusted R2

• R2 will likely increase (slightly) even by adding nonsense variables.

• Adding such variables increases in-sample fit, but will likely hurt out-of-
sample forecasting accuracy.

• The Adjusted R2 penalizes R2 for additional variables.

R2
adj = 1 − n− 1

n− k − 1

(
1 −R2

)
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• When the adjusted R2 increases when adding a variable, then the addi-
tional variable really did help explain the dependent variable.

• When the adjusted R2 decreases when adding a variable, then the addi-
tional variable does not help explain the dependent variable.

F-test for Regression Fit

• F-test for Regression Fit: Tests if the regression line explains the data.

• Very, very, very similar to ANOVA F-test.

• H0 : β1 = β2 = ... = βk = 0.

• H1 : At least one of the variables has explanatory power (i.e. at least one
coefficient is not equal to zero).

F =
SSR/(k − 1)

SSE/(n− k)

• Where k is the number of explanatory variables.

3.4 Regression Assumptions

Assumptions from the CLT

• Using the normal distribution to compute p-values depends on results from
the Central Limit Theorem.

• Sufficiently large sample size (much more than 30).

– Useful for normality result from the Central Limit Theorem

– Also necessary as you increase the number of explanatory variables.

• Normally distributed dependent and independent variables

– Useful for small sample sizes, but not essential as sample size in-
creases.

• Types of data:

– Dependent variable must be interval or ratio.

– Independent variable can be interval, ratio, or a dummy variable.

7



Crucial Assumptions for Regression

• Linearity: a straight line reasonably describes the data.

– Exceptions: experience on productivity, ordinal data like education
level on income.

– Consider transforming variables.

• Stationarity:

– The central limit theorem: behavior of statistics as sample size ap-
proaches infinity!

– The mean and variance must exist and be constant.

– Big issue in economic and financial time series.

• Exogeneity of explanatory variables.

– Dependent variable must not influence explanatory variables.

– Explanatory variables must not be influenced by excluded variables
that can influence dependent variable.

– Example problem: how does advertising affect sales?
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