Decision Making

BUS 735: Business Decision Making and Research

-

BUS 735: Business Decision Making and Research Decision Making

Goals and Agenda

イロト イヨト イヨト イヨト

Э

Learning Objective	Active Learning Activity
Learn how to make decisions	Lecture / Example problems.
with uncertainty, without us-	
ing probabilities.	
Practice what we learn.	In-class exercise.
Learn how to make decisions	Lecture / Example problems.
with uncertainty, using proba-	
bilities.	
Practice what we learn.	In-class exercise.

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

- Suppose you have to decide on one of three choices for your business:
 - Expand facilities.
 - ② Renovate existing facilities.
 - O nothing.
- Each have costs (known) and benefits (unknown).
- Suppose profits depend on economic conditions:

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

- Suppose you have to decide on one of three choices for your business:
 - Expand facilities.
 - ② Renovate existing facilities.
 - O nothing.
- Each have costs (known) and benefits (unknown).
- Suppose profits depend on economic conditions:

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

- Suppose you have to decide on one of three choices for your business:
 - Expand facilities.
 - 2 Renovate existing facilities.
 - O nothing.
- Each have costs (known) and benefits (unknown).
- Suppose profits depend on economic conditions:

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

- Suppose you have to decide on one of three choices for your business:
 - Expand facilities.
 - 2 Renovate existing facilities.
 - O nothing.
- Each have costs (known) and benefits (unknown).
- Suppose profits depend on economic conditions:

Decision	Good Economic	Bad Economic
Decision	Conditions	Conditions
Expand	\$150,000	-\$10,000
Renovate	\$90,000	\$10,000
Do nothing	\$70,000	\$40,000

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

- 3/ 18
- Suppose you have to decide on one of three choices for your business:
 - Expand facilities.
 - Provide existing facilities.
 - O nothing.
- Each have costs (known) and benefits (unknown).
- Suppose profits depend on economic conditions:

Decision	Good Economic	Bad Economic
Decision	Conditions	Conditions
Expand	\$150,000	-\$10,000
Renovate	\$90,000	\$10,000
Do nothing	\$70,000	\$40,000

Maximax Decision

3

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

ロト イポト イヨト イヨト

Maximax Decision

4/ 18

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

Maximax Decision

4/ 18

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

Maximax Decision

4/18

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

Maximax Decision

4/18

- - - E →

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

Maximax Decision

4/18

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic	Bad Economic	Maximum
	Conditions	Conditions	Maximum
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

Maximax Decision

4/18

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic	Bad Economic	Maximum
Decision	Conditions	Conditions	Maximum
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

Maximin Decision

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

イロト イポト イヨト イヨト

• Maximin Decision:

- Compute the worst (minimum) outcome for each choice (very pessimistic).
- Choose the maximum of the worst outcomes.
- Choosing options given worst-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Minimum
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

イロト イポト イヨト イヨト

Maximin Decision

5/ 18

- Maximin Decision:
 - Compute the worst (minimum) outcome for each choice (very pessimistic).
 - Choose the maximum of the worst outcomes.
 - Choosing options given worst-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Minimum
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

イロト イポト イヨト イヨト

Maximin Decision

5/ 18

- Maximin Decision:
 - Compute the worst (minimum) outcome for each choice (very pessimistic).
 - Choose the maximum of the worst outcomes.
 - Choosing options given worst-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Minimum
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

イロト イポト イヨト イヨト

Maximin Decision

5/ 18

- Maximin Decision:
 - Compute the worst (minimum) outcome for each choice (very pessimistic).
 - Choose the maximum of the worst outcomes.
 - Choosing options given worst-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Minimum
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

Maximin Decision

5/18

- Maximin Decision:
 - Compute the worst (minimum) outcome for each choice (very pessimistic).
 - Choose the maximum of the worst outcomes.
 - Choosing options given worst-case scenarios.

Decision	Good Economic	Bad Economic	Minimum
Decision	Conditions	Conditions	winning
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

Maximin Decision

- Maximin Decision:
 - Compute the worst (minimum) outcome for each choice (very pessimistic).
 - Choose the maximum of the worst outcomes.
 - Choosing options given worst-case scenarios.

Decision	Good Economic	Bad Economic	Minimum
Decision	Conditions	Conditions	Ivininani
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

イロト イヨト イヨト イヨ

- **Regret** is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to *do nothing* and there ended up being good economic conditions.
 - Best decision given good economic condition is to *expand*. Profit = \$150,000.
 - Profit from *doing nothing* given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

- **Regret** is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to *do nothing* and there ended up being good economic conditions.
 - Best decision given good economic condition is to *expand*. Profit = \$150,000.
 - Profit from *doing nothing* given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

- **Regret** is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to *do nothing* and there ended up being good economic conditions.
 - Best decision given good economic condition is to *expand*. Profit = \$150,000.
 - Profit from *doing nothing* given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

- **Regret** is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to *do nothing* and there ended up being good economic conditions.
 - Best decision given good economic condition is to *expand*. Profit = \$150,000.
 - Profit from *doing nothing* given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

- **Regret** is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to *do nothing* and there ended up being good economic conditions.
 - Best decision given good economic condition is to *expand*. Profit = \$150,000.
 - Profit from *doing nothing* given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

- **Regret** is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to *do nothing* and there ended up being good economic conditions.
 - Best decision given good economic condition is to *expand*. Profit = \$150,000.
 - Profit from *doing nothing* given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

Minimax Regret Decision

Payouts Table:

Decision	Good Economic Conditions	Bad Economic Conditions
Expand	\$150,000	-\$10,000
Renovate	\$90,000	\$10,000
Do nothing	\$70,000	\$40,000

• Regrets Table:

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

Minimax Regret Decision

Payouts Table:

Decision	Good Economic	Bad Economic
Decision	Conditions	Conditions
Expand	\$150,000	-\$10,000
Renovate	\$90,000	\$10,000
Do nothing	\$70,000	\$40,000

• Regrets Table:

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

Minimax Regret Decision

Payouts Table:

Decision	Good Economic	Bad Economic
Decision	Conditions	Conditions
Expand	\$150,000	-\$10,000
Renovate	\$90,000	\$10,000
Do nothing	\$70,000	\$40,000

Regrets Table:

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$0	\$50,000	\$50,000
Renovate	\$60,000	\$30,000	\$60,000
Do nothing	\$80,000	\$0	\$80,000

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

Minimax Regret Decision

Payouts Table:

Decision	Good Economic	Bad Economic
Decision	Conditions	Conditions
Expand	\$150,000	-\$10,000
Renovate	\$90,000	\$10,000
Do nothing	\$70,000	\$40,000

Regrets Table:

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$0	\$50,000	\$50,000
Renovate	\$60,000	\$30,000	\$60,000
Do nothing	\$80,000	\$0	\$80,000

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

Minimax Regret Decision

Payouts Table:

Decision	Good Economic	Bad Economic
Decision	Conditions	Conditions
Expand	\$150,000	-\$10,000
Renovate	\$90,000	\$10,000
Do nothing	\$70,000	\$40,000

• Regrets Table:

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$0	\$50,000	\$50,000
Renovate	\$60,000	\$30,000	\$60,000
Do nothing	\$80,000	\$0	\$80,000

Equally Likely Decision

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).
- P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.
- Equal Likelihood Table:

Equally Likely Decision

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).
- P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.
- Equal Likelihood Table:

Equally Likely Decision

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).
- P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.
- Equal Likelihood Table:

Equally Likely Decision

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).
- P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.
- Equal Likelihood Table:

Decision	Good Economic Conditions	Bad Economic Conditions	"Expected" Value
Expand	\$150,00	-\$10,000	\$70,000
Renovate	\$90,000	\$10,000	\$50,000
Do nothing	\$70,000	\$40,000	\$55,000

Equally Likely Decision

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).
- P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.
- Equal Likelihood Table:

Decision	Good Economic	Bad Economic	"Expected"
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$70,000
Renovate	\$90,000	\$10,000	\$50,000
Do nothing	\$70,000	\$40,000	\$55,000

• Maximum "expected" value = \$70,000. Decision = Expand!

200

Equally Likely Decision

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).
- P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.
- Equal Likelihood Table:

Decision	Good Economic	Bad Economic	"Expected"
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$70,000
Renovate	\$90,000	\$10,000	\$50,000
Do nothing	\$70,000	\$40,000	\$55,000

• Maximum "expected" value = \$70,000. Decision = Expand!

200

Hurwicz Decision

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- Coefficient of optimism, given by $\alpha,$ is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .
- Suppose $\alpha = 0.2$ (very arbitrary).

Hurwicz Decision

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- Coefficient of optimism, given by $\alpha,$ is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .

• Suppose
$$\alpha = 0.2$$
 (very arbitrary).

Hurwicz Decision

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- Coefficient of optimism, given by α , is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .
- Suppose $\alpha = 0.2$ (very arbitrary).

Hurwicz Decision

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- Coefficient of optimism, given by $\alpha,$ is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .
- Suppose $\alpha = 0.2$ (very arbitrary).

Decision	Good Economic	Bad Economic	"Expected"
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$22,000
Renovate	\$90,000	\$10,000	\$26,000
Do nothing	\$70,000	\$40,000	\$46,000

Hurwicz Decision

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- Coefficient of optimism, given by α , is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .
- Suppose $\alpha = 0.2$ (very arbitrary).

Decision	Good Economic	Bad Economic	"Expected"
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$22,000
Renovate	\$90,000	\$10,000	\$26,000
Do nothing	\$70,000	\$40,000	\$46,000

Hurwicz Decision

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- Coefficient of optimism, given by $\alpha,$ is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .
- Suppose $\alpha = 0.2$ (very arbitrary).

Decision	Good Economic	Bad Economic	"Expected"
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$22,000
Renovate	\$90,000	\$10,000	\$26,000
Do nothing	\$70,000	\$40,000	\$46,000

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

• Coefficient of optimism can be very difficult to choose.

- Optimal choice might vary a lot depending on this parameter.
- For each pair of decisions, find the cut-off value of α that leads one to switch decisions.

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

- Coefficient of optimism can be very difficult to choose.
- Optimal choice might vary a lot depending on this parameter.
- For each pair of decisions, find the cut-off value of α that leads one to switch decisions.

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

- Coefficient of optimism can be very difficult to choose.
- Optimal choice might vary a lot depending on this parameter.
- For each pair of decisions, find the cut-off value of α that leads one to switch decisions.

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

イロト イポト イヨト イヨト

Summary of Results

Criterion	Decision
Maximax	Expand
Maximin	Do nothing
Minimax Regret	Expand
Equal Likelihood	Expand
Hurwicz ($\alpha = 0.2$)	Do nothing

- **Dominant decision:** when same choice is made for every criterion considered.
- **Dominated decision:** when choice is never made for every criterion considered.

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

イロト イポト イヨト イヨト

Summary of Results

Criterion	Decision
Maximax	Expand
Maximin	Do nothing
Minimax Regret	Expand
Equal Likelihood	Expand
Hurwicz ($\alpha = 0.2$)	Do nothing

- **Dominant decision:** when same choice is made for every criterion considered.
- **Dominated decision:** when choice is never made for every criterion considered.

Maximax Decision Maximin Decision Minimax Regret Decision Maximum-Weighted Decisions

Criterion	Decision
Maximax	Expand
Maximin	Do nothing
Minimax Regret	Expand
Equal Likelihood	Expand
Hurwicz ($\alpha = 0.2$)	Do nothing

- **Dominant decision:** when same choice is made for every criterion considered.
- **Dominated decision:** when choice is never made for every criterion considered.

Expected Values: Probabilities Known

- $12/\ 18$
- Suppose probabilities for good economic conditions and bad economic conditions are known.
- Suppose P(Good Economic Conditions) 0.6, P(Bad Economic Conditions) = 0.4.

- Maximum expected value = \$86,000. Decision = Expand!
- A risk neutral decision maker should make this decision.

Expected Values: Probabilities Known

- Suppose probabilities for good economic conditions and bad economic conditions are known.
- Suppose P(Good Economic Conditions) 0.6, P(Bad Economic Conditions) = 0.4.

Decision	Good Economic Conditions	Bad Economic Conditions	Expected Value
Expand	\$150,00	-\$10,000	\$86,000
Renovate	\$90,000	\$10,000	\$58,000
Do nothing	\$70,000	\$40,000	\$58,000

- Maximum expected value = \$86,000. Decision = Expand!
- A risk neutral decision maker should make this decision.

Expected Values: Probabilities Known

- Suppose probabilities for good economic conditions and bad economic conditions are known.
- Suppose P(Good Economic Conditions) 0.6, P(Bad Economic Conditions) = 0.4.

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$86,000
Renovate	\$90,000	\$10,000	\$58,000
Do nothing	\$70,000	\$40,000	\$58,000

- Maximum expected value = \$86,000. Decision = Expand!
- A risk neutral decision maker should make this decision.

999

Expected Values: Probabilities Known

- Suppose probabilities for good economic conditions and bad economic conditions are known.
- Suppose P(Good Economic Conditions) 0.6, P(Bad Economic Conditions) = 0.4.

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$86,000
Renovate	\$90,000	\$10,000	\$58,000
Do nothing	\$70,000	\$40,000	\$58,000

- Maximum expected value = \$86,000. Decision = Expand!
- A risk neutral decision maker should make this decision.

200

・ 同 ト ・ ヨ ト ・ ヨ ト

Expected Values: Probabilities Known

- Suppose probabilities for good economic conditions and bad economic conditions are known.
- Suppose P(Good Economic Conditions) 0.6, P(Bad Economic Conditions) = 0.4.

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$150,00	-\$10,000	\$86,000
Renovate	\$90,000	\$10,000	\$58,000
Do nothing	\$70,000	\$40,000	\$58,000

- Maximum expected value = \$86,000. Decision = Expand!
- A risk neutral decision maker should make this decision.

~ ~ ~ ~ ~

Expected Opportunity Loss

- Expected opportunity loss (EOL) = expected value of regret for each decision.
- Regrets Table:

- Minimum expected regret = \$20,000. Decision = Expand!
- Minimum expected loss decision *will always be equal to* maximum expected value decision.

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ う く ()・

- Expected opportunity loss (EOL) = expected value of regret for each decision.
- Regrets Table:

Decision	Good Economic Conditions	Bad Economic Conditions	Expected Value
Expand	\$0	\$50,000	\$20,000
Renovate	\$60,000	\$30,000	\$48,000
Do nothing	\$80,000	\$0	\$48,000

- Minimum expected regret = \$20,000. Decision = Expand!
- Minimum expected loss decision *will always be equal to* maximum expected value decision.

・ロト ・聞 ・ ・ 聞 ・ ・ 聞 ・ うらの

- Expected opportunity loss (EOL) = expected value of regret for each decision.
- Regrets Table:

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$0	\$50,000	\$20,000
Renovate	\$60,000	\$30,000	\$48,000
Do nothing	\$80,000	\$0	\$48,000

- Minimum expected regret = \$20,000. Decision = Expand!
- Minimum expected loss decision will always be equal to maximum expected value decision.

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ う く ()・

- Expected opportunity loss (EOL) = expected value of regret for each decision.
- Regrets Table:

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$0	\$50,000	\$20,000
Renovate	\$60,000	\$30,000	\$48,000
Do nothing	\$80,000	\$0	\$48,000

• Minimum expected regret = \$20,000. Decision = Expand!

イロト イポト イヨト イヨト

• Minimum expected loss decision *will always be equal to* maximum expected value decision.

- Expected opportunity loss (EOL) = expected value of regret for each decision.
- Regrets Table:

Decision	Good Economic	Bad Economic	Expected
	Conditions	Conditions	Value
Expand	\$0	\$50,000	\$20,000
Renovate	\$60,000	\$30,000	\$48,000
Do nothing	\$80,000	\$0	\$48,000

• Minimum expected regret = \$20,000. Decision = Expand!

イロト イポト イヨト イヨト

 Minimum expected loss decision will always be equal to maximum expected value decision.

 $14/ \ 18$

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:

• Decision = Expand, Profit = \$150,000.

• If you were told bad economic conditions:

Decision = Do nothing, Profit = \$40,000.

- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) =\$106,000.
- Expected profit from maximizing expected value = \$86,000.

- EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

 $14/\ 18$

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:

• Decision = Expand, Profit = \$150,000.

• If you were told bad economic conditions:

Decision = Do nothing, Profit = \$40,000.

- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) =\$106,000.
- Expected profit from maximizing expected value = \$86,000.

- EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

 $14/\ 18$

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) =\$106,000.
- Expected profit from maximizing expected value = \$86,000.

- EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

• Suppose you could purchase "perfect information" about what will happen. How much would you pay?

- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) =\$106,000.
- Expected profit from maximizing expected value = \$86,000.

- EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

• Suppose you could purchase "perfect information" about what will happen. How much would you pay?

- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) =\$106,000.
- Expected profit from maximizing expected value = \$86,000.

- EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) =\$106,000.
- Expected profit from maximizing expected value = \$86,000.

- EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.
 EVPI = \$106,000 \$86,000 = \$20,000.

イロト イポト イヨト イヨト

• Not coincidentally, EVPI = EOL.

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.

- EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.

- EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.

- EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

Bayesian Analysis

・ 同 ト ・ ヨ ト ・ ヨ ト

- **Bayesian analysis:** decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not *perfect information*.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - g: Good economic conditions.
 - b: Bad economic conditions.

 $\bullet \ \ \mathsf{Of\ course,}\ \mathsf{P}(\mathsf{P}) = 1 \ \ \mathsf{P}(\mathsf{N}), \quad \mathsf{P}(\mathsf{g}) = 1 \ \ \mathsf{P}(\mathsf{b}).$

Bayesian Analysis

- **Bayesian analysis:** decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not *perfect information*.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - g: Good economic conditions.
 - b: Bad economic conditions.

 $\bullet \ \ \mathsf{Of\ course,}\ \mathsf{P}(\mathsf{P}) = 1 \ \ \mathsf{P}(\mathsf{N}), \quad \mathsf{P}(\mathsf{g}) = 1 \ \ \mathsf{P}(\mathsf{b}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Bayesian Analysis

- **Bayesian analysis:** decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not *perfect information*.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - g: Good economic conditions.
 - b: Bad economic conditions.

 $\bullet \ \ \mathsf{Of\ course,}\ \mathsf{P}(\mathsf{P}) = 1 \ \ \mathsf{P}(\mathsf{N}), \quad \mathsf{P}(\mathsf{g}) = 1 \ \ \mathsf{P}(\mathsf{b}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

- **Bayesian analysis:** decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not *perfect information*.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - g: Good economic conditions.
 - b: Bad economic conditions.

 $\bullet \ \ \mathsf{Of\ course,}\ \mathsf{P}(\mathsf{P}) = 1 \ \ \mathsf{P}(\mathsf{N}), \quad \mathsf{P}(\mathsf{g}) = 1 \ \ \mathsf{P}(\mathsf{b}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

- **Bayesian analysis:** decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not *perfect information*.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - g: Good economic conditions.
 - b: Bad economic conditions.
- $\bullet \ \ \mathsf{Of\ course,}\ \mathsf{P}(\mathsf{P}) = 1 \ \ \mathsf{P}(\mathsf{N}), \quad \mathsf{P}(\mathsf{g}) = 1 \ \ \mathsf{P}(\mathsf{b}).$

向下 イヨト イヨト

- **Bayesian analysis:** decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not *perfect information*.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - g: Good economic conditions.
 - b: Bad economic conditions.

 $\bullet \ \ \mathsf{Of\ course,}\ \mathsf{P}(\mathsf{P}) = 1 \ \ \mathsf{P}(\mathsf{N}), \quad \mathsf{P}(\mathsf{g}) = 1 \ \ \mathsf{P}(\mathsf{b}).$

- **Bayesian analysis:** decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not *perfect information*.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - g: Good economic conditions.
 - b: Bad economic conditions.

 $\bullet \ \ \mathsf{Of\ course,}\ \mathsf{P}(\mathsf{P}) = 1 \ \ \mathsf{P}(\mathsf{N}), \quad \mathsf{P}(\mathsf{g}) = 1 \ \ \mathsf{P}(\mathsf{b}).$

- **Bayesian analysis:** decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not *perfect information*.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - g: Good economic conditions.
 - b: Bad economic conditions.
- Of course, P(P) = 1 P(N), P(g) = 1 P(b).

- **Bayesian analysis:** decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not *perfect information*.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - g: Good economic conditions.
 - b: Bad economic conditions.

• Of course, P(P) = 1 - P(N), P(g) = 1 - P(b).

- **Bayesian analysis:** decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not *perfect information*.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - g: Good economic conditions.
 - b: Bad economic conditions.

• Of course, P(P) = 1 - P(N), P(g) = 1 - P(b).

イロト イポト イヨト イヨト

- Suppose generally, good economic conditions occur 60% of the time, and bad economic conditions occur 40% of the time.
- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Probabilities:
 - P(P|g) = 0.8, P(N|g) = 0.2.
 - P(N|b) = 0.9, P(P|b) = 0.1.
 - P(g) = 0.6, P(b) = 0.4.

- Suppose generally, good economic conditions occur 60% of the time, and bad economic conditions occur 40% of the time.
- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - $\bullet\,$ good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Probabilities:

•
$$P(P|g) = 0.8, P(N|g) = 0.2.$$

- P(N|b) = 0.9, P(P|b) = 0.1.
- P(g) = 0.6, P(b) = 0.4.

イロト イポト イヨト イヨト

- Suppose generally, good economic conditions occur 60% of the time, and bad economic conditions occur 40% of the time.
- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - $\bullet\,$ good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Probabilities:
 - P(P|g) = 0.8, P(N|g) = 0.2.
 - P(N|b) = 0.9, P(P|b) = 0.1.
 - P(g) = 0.6, P(b) = 0.4.

イロト イポト イヨト イヨト

Bayesian Analysis

- Suppose generally, good economic conditions occur 60% of the time, and bad economic conditions occur 40% of the time.
- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - $\bullet\,$ good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Probabilities:

P(P|g) = 0.8, P(N|g) = 0.2.
P(N|b) = 0.9, P(P|b) = 0.1.
P(g) = 0.6, P(b) = 0.4.

- Suppose generally, good economic conditions occur 60% of the time, and bad economic conditions occur 40% of the time.
- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - $\bullet\,$ good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Probabilities:

•
$$P(P|g) = 0.8, P(N|g) = 0.2.$$

•
$$P(N|b) = 0.9, P(P|b) = 0.1.$$

•
$$P(g) = 0.6, P(b) = 0.4.$$

マロト イヨト イヨト

- Suppose generally, good economic conditions occur 60% of the time, and bad economic conditions occur 40% of the time.
- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - $\bullet\,$ good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Probabilities:

•
$$P(P|g) = 0.8$$
, $P(N|g) = 0.2$.

• P(N|b) = 0.9, P(P|b) = 0.1.

•
$$P(g) = 0.6, P(b) = 0.4.$$

- Suppose generally, good economic conditions occur 60% of the time, and bad economic conditions occur 40% of the time.
- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - $\bullet\,$ good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Probabilities:
 - P(P|g) = 0.8, P(N|g) = 0.2.
 - P(N|b) = 0.9, P(P|b) = 0.1.
 - P(g) = 0.6, P(b) = 0.4.

- Suppose generally, good economic conditions occur 60% of the time, and bad economic conditions occur 40% of the time.
- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - $\bullet\,$ good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Probabilities:
 - P(P|g) = 0.8, P(N|g) = 0.2.
 - P(N|b) = 0.9, P(P|b) = 0.1.
 - P(g) = 0.6, P(b) = 0.4.

Decision Making Without Probabilities Decision Making With Probabilities

Bayesian Analysis

Expected Values Bayesian Analysis

イロト イポト イヨト イヨト

Suppose a positive report came out. We want to know P(g|P):

$$P(g|P) = \frac{P(g \cap P)}{P(P)} = \frac{P(P|g)P(g)}{P(P|g)P(g) + P(P|b)P(b)}$$
$$= \frac{(0.8)(0.6)}{(0.8)(0.6) + (0.1)(0.4)} = 0.923$$

Expected Values Bayesian Analysis

イロト イポト イヨト イヨト

Bayesian Analysis

Suppose a positive report came out. We want to know P(g|P):

$$P(g|P) = \frac{P(g \cap P)}{P(P)} = \frac{P(P|g)P(g)}{P(P|g)P(g) + P(P|b)P(b)}$$
$$= \frac{(0.8)(0.6)}{(0.8)(0.6) + (0.1)(0.4)} = 0.923$$

Decision Making Without Probabilities Decision Making With Probabilities Expected Values Bayesian Analysis

イロト イポト イヨト イヨト

Compute Conditional Expected Values

18/ 18

- Now use P(g|P) and P(b|P) to find decision that maximizes expected value. What is the expected value?
- What would your decision be if there was a negative report? What is the expected value?

Compute Conditional Expected Values

 $18/\ 18$

- Now use P(g|P) and P(b|P) to find decision that maximizes expected value. What is the expected value?
- What would your decision be if there was a negative report? What is the expected value?