Decision Making

BUS 735: Business Decision Making and Research

1

1.1 Goals and Agenda

Goals and Agenda

Learning Objective	Active Learning Activity
Learn how to make decisions	Lecture / Example problems.
with uncertainty, without using	
probabilities.	
Practice what we learn.	In-class exercise.
Learn how to make decisions	Lecture / Example problems.
with uncertainty, using proba-	
bilities.	
Practice what we learn.	In-class exercise.

2 Decision Making Without Probabilities

Decision Making Without Probabilities

- Suppose you have to decide on one of three choices for your business:
 - 1. Expand facilities.
 - 2. Renovate existing facilities.
 - 3. Do nothing.
- Each have costs (known) and benefits (unknown).

	Decision	Good Economic	Bad Economic
		Conditions	Conditions
• Suppose profits depend on economic conditions:	Expand	\$150,000	-\$10,000
	Renovate	\$90,000	\$10,000
	Do nothing	\$70,000	\$40,000

2.1 Maximax Decision

Maximax Decision

- Problem: probabilities of having good economic conditions or bad economic conditions are unknown.
- Maximax Decision:
 - Compute the best (maximum) outcome for each choice (very optimistic).
 - Choose the maximum of the best outcomes.
 - Choosing options given best-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
Expand	\$150,000	-\$10,000	\$150,000
Renovate	\$90,000	\$10,000	\$90,000
Do nothing	\$70,000	\$40,000	\$70,000

• Maximum of maximums = \$150,000. Choice = Expand!

2.2 Maximin Decision

Maximin Decision

- Maximin Decision:
 - Compute the worst (minimum) outcome for each choice (very pessimistic).
 - Choose the maximum of the worst outcomes.
 - Choosing options given worst-case scenarios.

Decision	Good Economic Conditions	Bad Economic Conditions	Minimum
Expand	\$150,000	-\$10,000	-\$10,000
Renovate	\$90,000	\$10,000	\$10,000
Do nothing	\$70,000	\$40,000	\$40,000

• Maximum of minimums = \$40,000. Choice = Do Nothing!

2.3 Minimax Regret Decision

Minimax Regret Decision

- **Regret** is the difference between the payoff of a given decision and the best decision under a given scenario.
- Example: Suppose you chose to *do nothing* and there ended up being good economic conditions.
 - Best decision given good economic condition is to expand. Profit = \$150,000.
 - Profit from *doing nothing* given good economic condition is \$70,000.
 - Regret = \$150,000 \$70,000 = \$80,000.
- Minimax Regret Decision:
 - Compute regrets for every cell in table..
 - Find the maximum regret for each decision.
 - Choose the minimum of these maximum regret values.

Minimax Regret Decision

Desigion	Decision	Good Economic	Bad Economic
	Decision	Conditions	Conditions
• Payouts Table:	Expand	\$150,000	-\$10,000
	Renovate	\$90,000	\$10,000
	Do nothing	\$70,000	\$40,000

	Decision	Good Economic Conditions	Bad Economic Conditions	Maximum
• Regrets Table:	Expand	\$0	\$50,000	\$50,000
	Renovate	\$60,000	\$30,000	\$60,000
	Do nothing	\$80,000	\$0	\$80,000

• Minimum of maximum regrets = \$50,000. Choice = Expand!

2.4 Maximum-Weighted Decisions

Equally Likely Decision

- Suppose (for no reason whatsoever) that each outcome is equally likely.
- Compute weighted average of each decision (with equal weights).

• P(Good Economic Conditions) = P(Bad Economic Conditions) = 0.5.

	Decision	Good Economic	Bad Economic	"Expected"
	Decision	Conditions	Conditions	Value
• Equal Likelihood Table:	Expand	\$150,00	-\$10,000	\$70,000
	Renovate	\$90,000	\$10,000	\$50,000
	Do nothing	\$70,000	\$40,000	\$55,000

• Maximum "expected" value = \$70,000. Decision = Expand!

Hurwicz Decision

- Take a weighted average again, but choose an arbitrary weight for the best-case value.
- \bullet Coefficient of optimism, given by $\alpha,$ is a measure of the decision makers optimism.
- Best-case weight = α , worst-case weight = (1α) .

	Decision	Good Economic	Bad Economic	"Expected"
	Decision	Conditions	Conditions	Value
• Suppose $\alpha = 0.2$ (very arbitrary).	Expand	\$150,00	-\$10,000	\$22,000
	Renovate	\$90,000	\$10,000	\$26,000
	Do nothing	\$70,000	\$40,000	\$46,000

• Maximum "expected" value = \$46,000. Decision = Do Nothing!

Dependence on Optimism

- Coefficient of optimism can be very difficult to choose.
- Optimal choice might vary a lot depending on this parameter.
- \bullet For each pair of decisions, find the cut-off value of α that leads one to switch decisions.

Summary of Results

Criterion	Decision
Maximax	Expand
Maximin	Do nothing
Minimax Regret	Expand
Equal Likelihood	Expand
Hurwicz ($\alpha = 0.2$)	Do nothing

- Dominant decision: when same choice is made for every criterion considered.
- **Dominated decision:** when choice is never made for every criterion considered.

3 Decision Making With Probabilities

3.1 Expected Values

[shrink]

Expected Values: Probabilities Known

- Suppose probabilities for good economic conditions and bad economic conditions are known.
- Suppose P(Good Economic Conditions) 0.6, P(Bad Economic Conditions)

	Decision	Good Economic	Bad Economic	Expected
	Decision	Conditions	Conditions	Value
= 0.4.	Expand	\$150,00	-\$10,000	\$86,000
	Renovate	\$90,000	\$10,000	\$58,000
	Do nothing	\$70,000	\$40,000	\$58,000

- Maximum expected value = \$86,000. Decision = Expand!
- A risk neutral decision maker should make this decision.

Expected Opportunity Loss

• Expected opportunity loss (EOL) = expected value of regret for each decision.

	Decision	Good Economic	Bad Economic	Expected
	Decision	Conditions	Conditions	Value
• Regrets Table:	Expand	\$0	\$50,000	\$20,000
	Renovate	\$60,000	\$30,000	\$48,000
	Do nothing	\$80,000	\$0	\$48,000

- Minimum expected regret = \$20,000. Decision = Expand!
- Minimum expected loss decision will always be equal to maximum expected value decision.

Expected Value of Perfect Information

- Suppose you could purchase "perfect information" about what will happen. How much would you pay?
- If you were told good economic conditions:
 - Decision = Expand, Profit = \$150,000.
- If you were told bad economic conditions:
 - Decision = Do nothing, Profit = \$40,000.
- A priori expected profit (given you will make a perfect decision):
 - Expected Profit = (0.6)(\$150,000) + (0.4)(\$40,000) = \$106,000.
- Expected profit from maximizing expected value = \$86,000.
- EVPI = \$106,000 \$86,000 = \$20,000.
- Not coincidentally, EVPI = EOL.

3.2 Bayesian Analysis

Bayesian Analysis

- Bayesian analysis: decision making using additional information which alter conditional probabilities.
- Suppose P(good economic conditions), P(bad economic conditions) are simply based on past history.
- Suppose your the Minneapolis Federal Reserve Bank issues an economic report (which they do) that indicates whether they have a positive economic outlook or a negative economic outlook.
- This is useful information, but not perfect information.
- Define the following events:
 - P: positive economic report.
 - N: negative economic report.
 - g: Good economic conditions.
 - b: Bad economic conditions.
- Of course, P(P) = 1 P(N), P(g) = 1 P(b).

Bayesian Analysis

- \bullet Suppose generally, good economic conditions occur 60% of the time, and bad economic conditions occur 40% of the time.
- Suppose past experience indicates the Federal Reserve report accurately forecasts...
 - good economic conditions 80% of the time, and
 - bad economic conditions 90% of the time.
- Probabilities:

$$-P(P|g) = 0.8, P(N|g) = 0.2.$$

$$-P(N|b) = 0.9, P(P|b) = 0.1.$$

$$-P(g) = 0.6, P(b) = 0.4.$$

Bayesian Analysis

Suppose a positive report came out. We want to know P(g|P):

$$\begin{split} P(g|P) &= \frac{P(g \cap P)}{P(P)} = \frac{P(P|g)P(g)}{P(P|g)P(g) + P(P|b)P(b)} \\ &= \frac{(0.8)(0.6)}{(0.8)(0.6) + (0.1)(0.4)} = 0.923 \end{split}$$

Compute Conditional Expected Values

- Now use P(g|P) and P(b|P) to find decision that maximizes expected value. What is the expected value?
- What would your decision be if there was a negative report? What is the expected value?