
Regression Analysis
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1

Goals of this section

Specific goals

• Learn how to detect relationships between ordinal and categorical vari-
ables.

• Learn how to estimate a linear relationship between many variables.

Learning objectives

• LO2: Be able to construct and use multiple regression models (including
some limited dependent variable models) to construct and test hypotheses
considering complex relationships among multiple variables.

• LO6: Be able to use standard computer packages such as SPSS and Excel
to conduct the quantitative analyses described in the learning objectives
above.

• LO7: Have a sound familiarity of various statistical and quantitative meth-
ods in order to be able to approach a business decision problem and be
able to select appropriate methods to answer the question.

2 Relationships Between Two Variables

2.1 Correlation

Correlation

• Pearson linear correlation coefficient: a value between -1 and +1 that is
used to measure the strength of a positive or negative linear relationship.

– Valid for interval or ratio data.

– Not appropriate for ordinal or nominal data.

– Test depends on assumptions behind the central limit theorem (CLT)
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• Spearman rank correlation: non-parametric test.

– Valid for small sample sizes (when assumptions of CLT are violated)

– Appropriate for interval, ratio, and even ordinal data.

– Still makes no sense to use for nominal data.

2.2 Chi-Squared Test of Independence

Chi-Squared Test for Independence

• Used to determine if two categorical variables (eg: nominal) are related.

• Example: Suppose a hotel manager surveys guest who indicate they will

not return:

Reason for Not Returning
Reason for Stay Price Location Amenities
Personal/Vacation 56 49 0
Business 20 47 27

• Data in the table are always frequencies that fall into individual categories.

• Could use this table to test if two variables are independent.

Test of independence

• Null hypothesis: there is no relationship between the row variable and
the column variable.

• Alternative hypothesis: The two variables are dependent.

• Test statistic:

χ2 =
∑ (O − E)

2

E

• O: observed frequency in a cell from the contingency table.

• E: expected frequency assuming variables are independent.

• Large χ2 values indicate variables are dependent (reject the null hypoth-
esis).

3 Regression

3.1 Single Variable Regression

Regression

• Regression line: equation of the line that describes the linear relationship
between variable x and variable y.
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• Need to assume that independent variables influence dependent variables.

– x: independent or explanatory variable.

– y: dependent variable.

– Variable x can influence the value for variable y, but not vice versa.

• Example: How does smoking affect lung capacity?

• Example: How does advertising affect sales?

Regression line

• Population regression line:

yi = β0 + β1xi + εi

• The actual coefficients β0 and β1 describing the relationship between x
and y are unknown.

• Use sample data to come up with an estimate of the regression line:

yi = b0 + b1xi + ei

• Since x and y are not perfectly correlated, still need to have an error term.

Predicted values and residuals

• Given a value for xi, can come up with a predicted value for yi, denoted
ŷi.

ŷi = b0 + b1xi

• This is not likely be the actual value for yi.

• Residual is the difference in the sample between the actual value of yi
and the predicted value, ŷ.

ei = yi − ŷ = yi − b0 − b1xi

3.2 Multiple Regression

Multiple Regression

• Multiple regression line (population):

yi = β0 + β1x1,i + β2x2 + ...+ βk−1xk−1 + εi

• Multiple regression line (sample):

yi = b0 + b1x1,i + b2x2 + ...+ bkxk + ei
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– k: number of parameters (coefficients) you are estimating.

– εi: error term, since linear relationship between the x variables and
y are not perfect.

– ei: residual = the difference between the predicted value ŷ and the
actual value yi.

Least Squares Estimate

• How should we obtain the “best fitting line”.

• Ordinary least squares (OLS) method.

• Choose sample estimates for the regression coefficients that minimizes:

n∑
i=0

(yi − ŷi)
2

Interpreting the slope

• Interpreting the slope, β: amount the y is predicted to increase when
increasing x by one unit.

• When β < 0 there is a negative linear relationship.

• When β > 0 there is a positive linear relationship.

• When β = 0 there is no linear relationship between x and y.

• SPSS reports sample estimates for coefficients, along with...

– Estimates of the standard errors.

– T-test statistics for H0 : β = 0.

– P-values of the T-tests.

– Confidence intervals for the coefficients.

Example: Public Expenditure

• Data from 1960 about public expenditures per capita, and variables that
may influence it.

• In SPSS, choose Analyze menu and select Regression and Linear.

• Select EX (Expenditure per capita) as your dependent variable. This is
the variable your are interested in explaining.

• Select your independent (aka explanatory) variables. These are the vari-
ables that you think can explain the dependent variable. I suggest you
select these:
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– ECAB: Economic Ability

– MET: Metropolitan

– GROW: Growth rate of population

– WEST: Western state = 1.

Example: Public Expenditure

• If the percentage of the population living in metropolitan areas in expected
to increase by 1%, what change should we expect in public expenditure?

• Is this change statistically significantly different from zero?

• Accounting for economic ability, metropolitan population, and population
growth, how much more to Western states spend on public expenditure
per capita?

3.3 Variance Decomposition

Sum of Squares Measures of Variation

• Sum of Squares Regression (SSR): measure of the amount of vari-
ability in the dependent (Y) variable that is explained by the independent
variables (X’s).

SSR =

n∑
i=1

(ŷi − ȳ)
2

• Sum of Squares Error (SSE): measure of the unexplained variability
in the dependent variable.

SSE =

n∑
i=1

(yi − ŷi)
2

Sum of Squares Measures of Variation

• Sum of Squares Total (SST): measure of the total variability in the
dependent variable.

SST =

n∑
i=1

(yi − ȳ)
2

• SST = SSR + SSE.
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Coefficient of determination

• The coefficient of determination is the percentage of variability in y
that is explained by x.

R2 =
SSR

SST

• R2 will always be between 0 and 1. The closer R2 is to 1, the better x is
able to explain y.

• The more variables you add to the regression, the higher R2 will be.

Adjusted R2

• R2 will likely increase (slightly) even by adding nonsense variables.

• Adding such variables increases in-sample fit, but will likely hurt out-of-
sample forecasting accuracy.

• The Adjusted R2 penalizes R2 for additional variables.

R2
adj = 1 − n− 1

n− k − 1

(
1 −R2

)
• When the adjusted R2 increases when adding a variable, then the addi-

tional variable really did help explain the dependent variable.

• When the adjusted R2 decreases when adding a variable, then the addi-
tional variable does not help explain the dependent variable.

F-test for Regression Fit

• F-test for Regression Fit: Tests if the regression line explains the data.

• Very, very, very similar to ANOVA F-test.

• H0 : β1 = β2 = ... = βk = 0.

• H1 : At least one of the variables has explanatory power (i.e. at least one
coefficient is not equal to zero).

F =
SSR/(k − 1)

SSE/(n− k)

• Where k is the number of explanatory variables.
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Example: Public Expenditure

• In the previous example, how much of the variability in public expenditure
is explained by the following four variables:

– ECAB: Economic Ability

– MET: Metropolitan

– GROW: Growth rate of population

– WEST: Western state = 1.

• Is the combination of these variables significant in explaining public ex-
penditure?

• Re-run the regression, this time also including:

– YOUNG: Percentage of population that is young.

– OLD: Percentage of population that is old.

Example: Public Expenditure

• What happened to the coefficient of determination?

• What happened to the adjusted coefficient of determination? What is
your interpretation?

• What happened to the estimated effect of the other variables: metropoli-
tan area? Western state?

4 Assumptions

4.1 Assumptions from the CLT

Assumptions from the CLT

• Using the normal distribution to compute p-values depends on results from
the Central Limit Theorem.

• Sufficiently large sample size (much more than 30).

– Useful for normality result from the Central Limit Theorem

– Also necessary as you increase the number of explanatory variables.

• Normally distributed dependent and independent variables

– Useful for small sample sizes, but not essential as sample size in-
creases.

• Types of data:

– Dependent variable must be interval or ratio.

– Independent variable can be interval, ratio, or a dummy variable.
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4.2 Crucial Assumptions for Regression

Crucial Assumptions for Regression

• Linearity: a straight line reasonably describes the data.

– Exceptions: experience on productivity, ordinal data like education
level on income.

– Consider transforming variables.

• Stationarity:

– The central limit theorem: behavior of statistics as sample size ap-
proaches infinity!

– The mean and variance must exist and be constant.

– Big issue in economic and financial time series.

• Exogeneity of explanatory variables.

– Dependent variable must not influence explanatory variables.

– Explanatory variables must not be influenced by excluded variables
that can influence dependent variable.

– Example problem: how does advertising affect sales?

4.3 Multicollinearity

Multicollinearity

• Multicollinearity: when two or more of the explanatory variables are
highly correlated.

• With multicollinearity, it is difficult to determine the effect coming from
a specific individual variable.

• Correlated variables will have standard errors for coefficients will be large
(coefficients will be statistically insignificant).

• Examples:

– experience and age used to predict productivity

– size of store (sq feet) and store sales used to predict demand for
inventories.

– parent’s income and parent’s education used to predict student per-
formance.

• Perfect multicollinearity - when two variables are perfectly correlated.
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4.4 Homoscedasticity

Homoscedasticity

• Homoscedasticity: when the variance of the error term is constant (it
does not depend on other variables).

• Counter examples (heteroscedasticity):

– Impact of income on demand for houses.

– Many economic and financial variables related to income suffer from
this.

• Heteroscedasticity is not too problematic:

– Estimates will still be unbiased.

– Your standard errors will be downward biased (reject more than you
should).

• May be evidence of a bigger problem: linearity or stationarity.
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