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Goals

• Specific goals:

– Detect relationships between variables.

– Be able to prescribe appropriate statistical methods for measuring
relationship based on scale of measurement.

– Detect how outcome variables can be explained by one or more ex-
planatory variables.

• Learning objectives:

– LO1: Construct and test hypotheses using a variety of bivariate sta-
tistical methods to compare characteristics between two populations.

– LO2: Construct and use advanced multivariate models to identify
complex relationships among multiple variables; including regression
models, limited dependent variable models, and analysis of variance
and covariance models.

2 Relationships Between Two Variables

2.1 Correlation

Correlation

• A correlation exists between two variables when one of them is related
to the other in some way.

• Pearson linear correlation coefficient is a measure of the strength of
the linear relationship between two variables.

– Parametric test for interval or ratio data

– Null hypothesis: there is zero linear correlation between two vari-
ables.

1



– Alternative hypothesis: there is a linear correlation (either positive
or negative) between two variables.

– Measures strength of linear relationship

• Spearman linear correlation coefficient

– Non-parametric test for ordinal, interval, and ratio data

– Pearson computation with ranks instead of actual data

– Same hypotheses.

– Measures strength of linear relationship in ranks, more general mono-
tonic relationships in interval/ratio data are permitted.

Positive linear correlation

• Positive correlation: two variables move in the same direction.

• Stronger correlation: closer correlation is to 1.0

• Perfect positive correlation: ρ = 1.0

Negative linear correlation

• Negative correlation: two variables move in opposite directions.

• Stronger correlation: closer the correlation coefficient is to -1.0

• Perfect negative correlation: ρ = −1.0
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No linear correlation

• Panel (g): no relationship at all.

• Panel (h): strong relationship, but not a linear relationship.

– Cannot use regular correlation to detect this.

2.2 Chi-Square Test of Independence

Chi-Square Test for Independence

• Used to determine if two categorical variables (eg: nominal) are related.

• Example: Suppose a hotel manager surveys guest who indicate they will

not return:

Reason for Not Returning
Reason for Stay Price Location Amenities
Personal/Vacation 56 49 0
Business 20 47 27

• Data in the table are always frequencies that fall into individual categories.

• Could use this table to test if two variables are independent.

Chi-Square Test of independence

• Null hypothesis: there is no relationship between the row variable and
the column variable (independent)

• Alternative hypothesis: There is a relationship between the row vari-
able and the column variable (dependent).
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2.3 Bivariate Regression

Bivariate Regression

• Regression line: equation of the line that describes the linear relationship
between variable x and variable y.

• Need to assume that independent variables influence dependent variables.

– x: independent or explanatory variable.

– y: dependent or outcome variable.

– Variable x can influence variable y, but not vice versa.

• Example: How does advertising expenditures affect sales revenue?

Regression line
Population regression line:

yi = β0 + β1xi + εi

• The population coefficients β0 and β1 describing the relationship between
x and y are unknown.

• Since x and y are not perfectly correlated, εi is the error term.

Sample regression line:

yi = b0 + b1xi + ei

• Not perfectly correlated, ei is the sample error term.

Predicted values and residuals
For a given xi, the predicted value for yi, denoted ŷi, is...

ŷi = b0 + b1xi

• This is not likely be the actual value for yi.

Residual is the difference in the sample between the actual value of yi and
the predicted value, ŷ.

ei = yi − ŷi = yi − b0 − b1xi
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3 Multiple Regression

3.1 Functional Form

Multiple Regression
Multiple regression line (population):

yi = β0 + β1x1,i + β2x2 + ...+ βkxk + εi

Multiple regression line (sample):

yi = b0 + b1x1,i + b2x2 + ...+ bkxk + ei

• k: number of explanatory variables

Interpreting the slope

• Interpreting the slope, β: amount the y is predicted to increase when
increasing x by one unit.

• When β < 0 there is a negative linear relationship.

• When β > 0 there is a positive linear relationship.

• When β = 0 there is no linear relationship between x and y.

• Statistical packages report sample estimates for coefficients, along with...

– Standard errors of the coefficients

– T-test statistics for H0 : β = 0.

– P-values of the T-tests.

– Confidence intervals for the coefficients.

3.2 Variance Decomposition

Sum of Squares Measures of Variation

• Sum of Squares Regression (SSR): measure of the amount of vari-
ability in the dependent (Y) variable that is explained by the independent
variables (X’s).

SSR =

n∑
i=1

(ŷi − ȳ)
2

• Sum of Squares Error (SSE): measure of the unexplained variability
in the dependent variable.

SSE =

n∑
i=1

(yi − ŷi)
2
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Sum of Squares Measures of Variation

• Sum of Squares Total (SST): measure of the total variability in the
dependent variable.

SST =

n∑
i=1

(yi − ȳ)
2

• SST = SSR + SSE.

Coefficient of determination

• The coefficient of determination is the percentage of variability in y
that is explained by x.

R2 =
SSR

SST

• R2 will always be between 0 and 1. The closer R2 is to 1, the better x is
able to explain y.

• The more variables you add to the regression, the higher R2 will be.

Adjusted R2

• R2 will likely increase (slightly) even by adding nonsense variables.

• Adding such variables increases in-sample fit, but will likely hurt out-of-
sample forecasting accuracy.

• The Adjusted R2 penalizes R2 for additional variables.

R2
adj = 1 − n− 1

n− k − 1

(
1 −R2

)
• When the adjusted R2 increases when adding a variable, then the addi-

tional variable really did help explain the dependent variable.

• When the adjusted R2 decreases when adding a variable, then the addi-
tional variable does not help explain the dependent variable.

F-test for Regression Fit

• F-test for Regression Fit: Tests if the regression line explains the data.

• Very, very, very similar to ANOVA F-test.

• H0 : β1 = β2 = ... = βk = 0.

• H1 : At least one of the variables has explanatory power (i.e. at least one
coefficient is not equal to zero).

F =
SSR/(k − 1)

SSE/(n− k)

• Where k is the number of explanatory variables.
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4 Regression Assumptions

4.1 Assumptions from the CLT

Assumptions from the CLT

• Using the normal distribution to compute p-values depends on results from
the Central Limit Theorem.

• Sufficiently large sample size (much more than 30).

– Useful for normality result from the Central Limit Theorem

– Also necessary as you increase the number of explanatory variables.

• Normally distributed dependent and independent variables

– Useful for small sample sizes, but not essential as sample size in-
creases.

• Types of data:

– Dependent variable must be interval or ratio.

– Independent variable can be interval, ratio, or a dummy variable.

4.2 Regression-Specific Assumptions

Regression-Specific Assumptions

• Linearity: a straight line reasonably describes the data.

– Exceptions: experience on productivity, ordinal data like education
level on income.

– Consider transforming variables.

• Stationarity:

– The central limit theorem: behavior of statistics as sample size ap-
proaches infinity!

– The mean and variance must exist and be constant.

– Big issue in economic and financial time series.

• Exogeneity of explanatory variables.

– Dependent variable must not influence explanatory variables.

– Explanatory variables must not be influenced by excluded variables
that can influence dependent variable.

– Example problem: how does advertising affect sales?
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