Simulation and Queing Theory

BUS 735: Business Decision Making and Research

(日) (日) (日) (日) (日)

E

BUS 735: Business Decision Making and Research Simulation and Queing Theory

Goals and Agenda

Learning Objective	Active Learning Activity
Learn how to simulate proba-	Example problem in Excel
bility distribution	
Learn how to simulate inven-	Example problem in Excel
tory systems.	
Learn how to simulate queuing	Two example problems in Ex-
systems.	cel
Practice makes perfect	Exercises in Excel
More practice	Read Chapter 12, pp 488-508

ヘロト ヘロト ヘビト ヘビト

E

Simulating Probability Distributions

- **Simulation:** drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.

<ロト < 回 > < 回 > < 回 > < 回 >

- Create linear combinations of variables.
- Take ratios!

Simulating Probability Distributions

- **Simulation:** drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.

<ロト < 回 > < 回 > < 回 > < 回 >

- Create linear combinations of variables.
- Take ratios!

Simulating Probability Distributions

- **Simulation:** drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.

イロト イポト イヨト イヨト

- Create linear combinations of variables.
- Take ratios!

Simulating Probability Distributions

- **Simulation:** drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.

イロト イポト イヨト イヨト

- Create linear combinations of variables.
- Take ratios!

Simulating Probability Distributions

- **Simulation:** drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.
 - Create linear combinations of variables.
 - Take ratios!

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Simulate computer demand
- Computers sell for \$4,300 each.
- Compute the mean and standard deviation for weekly demand for computers.
- Compute the mean and standard deviation for weekly revenue.

Probability Distribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

< 同 ▶ < 臣 ▶ < 臣 >

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Simulate computer demand
- Computers sell for \$4,300 each.
- Compute the mean and standard deviation for weekly demand for computers.
- Compute the mean and standard deviation for weekly revenue.

Probability Distribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

< 17 b

- - E - E

- (E)

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Simulate computer demand
- Computers sell for \$4,300 each.
- Compute the mean and standard deviation for weekly demand for computers.
- Compute the mean and standard deviation for weekly revenue.

Probability Distribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

< 17 b

- - E - E

- - E >

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Simulate computer demand
- Computers sell for \$4,300 each.
- Compute the mean and standard deviation for weekly demand for computers.
- Compute the mean and standard deviation for weekly revenue.

Probability Distribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Simulate computer demand
- Computers sell for \$4,300 each.
- Compute the mean and standard deviation for weekly demand for computers.
- Compute the mean and standard deviation for weekly revenue.

Probability Distribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

Something More Complicated

• Suppose there is an inventory cost of \$50 per computer.

- If the company falls short, the company not only fails to make
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate

イロト イポト イヨト イ

Something More Complicated

- Suppose there is an inventory cost of \$50 per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose \$500 in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory, shortage, and surplus, and revenue

- 4 同下 4 日下 4 日下

Something More Complicated

- Suppose there is an inventory cost of \$50 per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose \$500 in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory, shortage, and surplus, and revenue

Something More Complicated

- Suppose there is an inventory cost of \$50 per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose \$500 in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory, shortage, and surplus, and revenue

Inventory System of Equations

Simulate inventory, sales, surplus, and shortage:

$$\begin{aligned} \mathsf{nventory}_t &= \mathsf{Inventory}_{t-1} - \mathsf{Sales}_{t-1} + 1\\ \mathsf{Sales}_t &= \mathsf{min}(\mathsf{Inventory}_t, \mathsf{Demand}_t)\\ \mathsf{Surplus}_t &= \mathsf{Inventory}_t - \mathsf{Sales}_t\\ \mathsf{Shortage}_t &= \mathsf{Demand}_t - \mathsf{Sales}_t \end{aligned}$$

Simulate revenue with \$50 inventory cost, \$500 shortage cost:

Revenue_t = (\$4,300) Sales_t - (\$50) Inventory_t - (\$500)Shortage_t

(ロ) (同) (E) (E) (E)

Simulate inventory, sales, surplus, and shortage:

 $\mathsf{Inventory}_t = \mathsf{Inventory}_{t-1} - \mathsf{Sales}_{t-1} + 1$

 $Sales_t = min(Inventory_t, Demand_t)$ $Surplus_t = Inventory_t - Sales_t$ $Shortage_t = Demand_t - Sales_t$

Simulate revenue with \$50 inventory cost, \$500 shortage cost:

Revenue_t = (\$4,300) Sales_t - (\$50) Inventory_t - (\$500)Shortage_t

《日》 《圖》 《臣》 《臣》

Simulate inventory, sales, surplus, and shortage:

 $Inventory_{t} = Inventory_{t-1} - Sales_{t-1} + 1$ $Sales_{t} = min(Inventory_{t}, Demand_{t})$ $Surplus_{t} = Inventory_{t} - Sales_{t}$ $Shortage_{t} = Demand_{t} - Sales_{t}$

Simulate revenue with \$50 inventory cost, \$500 shortage cost:

Revenue_t = (\$4,300) Sales_t - (\$50) Inventory_t - (\$500)Shortage_t

《日》 《圖》 《臣》 《臣》

Simulate inventory, sales, surplus, and shortage:

$$\begin{aligned} \mathsf{nventory}_t &= \mathsf{Inventory}_{t-1} - \mathsf{Sales}_{t-1} + 1\\ \mathsf{Sales}_t &= \mathsf{min}(\mathsf{Inventory}_t, \mathsf{Demand}_t)\\ \mathsf{Surplus}_t &= \mathsf{Inventory}_t - \mathsf{Sales}_t\\ \mathsf{Shortage}_t &= \mathsf{Demand}_t - \mathsf{Sales}_t \end{aligned}$$

Simulate revenue with \$50 inventory cost, \$500 shortage cost:

Revenue_t = (\$4,300) Sales_t - (\$50) Inventory_t - (\$500)Shortage_t

Simulate inventory, sales, surplus, and shortage:

$$\begin{aligned} \mathsf{nventory}_t &= \mathsf{Inventory}_{t-1} - \mathsf{Sales}_{t-1} + 1\\ \mathsf{Sales}_t &= \mathsf{min}(\mathsf{Inventory}_t, \mathsf{Demand}_t)\\ \mathsf{Surplus}_t &= \mathsf{Inventory}_t - \mathsf{Sales}_t\\ \mathsf{Shortage}_t &= \mathsf{Demand}_t - \mathsf{Sales}_t \end{aligned}$$

Simulate revenue with \$50 inventory cost, \$500 shortage cost:

Revenue_t = (\$4,300) Sales_t - (\$50) Inventory_t - (\$500)Shortage_t

Simulate inventory, sales, surplus, and shortage:

$$\begin{aligned} \mathsf{nventory}_t &= \mathsf{Inventory}_{t-1} - \mathsf{Sales}_{t-1} + 1\\ \mathsf{Sales}_t &= \mathsf{min}(\mathsf{Inventory}_t, \mathsf{Demand}_t)\\ \mathsf{Surplus}_t &= \mathsf{Inventory}_t - \mathsf{Sales}_t\\ \mathsf{Shortage}_t &= \mathsf{Demand}_t - \mathsf{Sales}_t \end{aligned}$$

Simulate revenue with \$50 inventory cost, \$500 shortage cost:

Revenue_t = (4,300) Sales_t - (50) Inventory_t - (500)Shortage_t

(ロ) (同) (E) (E) (E)

Simulate inventory, sales, surplus, and shortage:

$$\begin{aligned} \mathsf{nventory}_t &= \mathsf{Inventory}_{t-1} - \mathsf{Sales}_{t-1} + 1\\ \mathsf{Sales}_t &= \mathsf{min}(\mathsf{Inventory}_t, \mathsf{Demand}_t)\\ \mathsf{Surplus}_t &= \mathsf{Inventory}_t - \mathsf{Sales}_t\\ \mathsf{Shortage}_t &= \mathsf{Demand}_t - \mathsf{Sales}_t \end{aligned}$$

Simulate revenue with \$50 inventory cost, \$500 shortage cost:

Revenue_t = (4,300) Sales_t - (500) Inventory_t - (500)Shortage_t

Queuing System Example: Denim Factory

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Example: Denim Factory

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Example: Denim Factory

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Example: Denim Factory

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Example: Denim Factory

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Example: Denim Factory

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Example: Denim Factory

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).
- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Example 1: Denim Factory Example 2: Bank Teller Queue

Queuing System Probability Distributions

7/12

Distribution of Arrival Intervals:

Arrival Interval	Probability
1 day	0.2
2 days	0.4
3 days	0.3
4 days	0.1

Distribution of Dying Times:

Dying Time	Probability
0.5 days	0.2
1 day	0.5
2 days	0.3

・ロト ・回ト ・ヨト ・ヨト

Ξ

<ロト < 回 > < 回 > < 回 > < 回 >

Queuing System Equations

Compute the following:

Simulate Interval_i.

• Waiting_i = max(Finish_{i-1} - Arrival_i, 0)

•
$$Idle_i = max(Arrival_i - Finish_{i-1}, 0)$$

- Simulate Dying_i.
- TimeSystem_i = Waiting_i + Dying_i

Queuing System Equations

Compute the following:

- Simulate Interval_i.
- 2 Arrival_i = Arrival_{i-1} + Interval_i
- Waiting_i = max(Finish_{i-1} Arrival_i, 0)

•
$$Idle_i = max(Arrival_i - Finish_{i-1}, 0)$$

- Simulate Dying_i.
- TimeSystem_i = Waiting_i + Dying_i

Queuing System Equations

Compute the following:

- Simulate Interval_i.
- 2 Arrival_i = Arrival_{i-1} + Interval_i
- Waiting_i = $max(Finish_{i-1} Arrival_i, 0)$
- $Idle_i = max(Arrival_i Finish_{i-1}, 0)$
- Simulate Dying_i.
- TimeSystem_i = Waiting_i + Dying_i
- Finish_i = Arrival_i + TimeSystem_i

Queuing System Equations

Compute the following:

Simulate Interval_i.

• Waiting_i = $max(Finish_{i-1} - Arrival_i, 0)$

• Idle_i =
$$max(Arrival_i - Finish_{i-1}, 0)$$

(TimeSystem $_i$ = Waiting $_i$ + Dying $_i$

Queuing System Equations

Compute the following:

- Simulate Interval_i.
- 2 Arrival_i = Arrival_{i-1} + Interval_i
- Waiting_i = $max(Finish_{i-1} Arrival_i, 0)$
- Idle_i = $max(Arrival_i Finish_{i-1}, 0)$
- Simulate Dying_i.
- TimeSystem_i = Waiting_i + Dying_i
- Finish_i = Arrival_i + TimeSystem_i

E

Queuing System Equations

Compute the following:

Simulate Interval_i.

3 Waiting_i =
$$max$$
(Finish_{i-1} – Arrival_i, 0)

•
$$Idle_i = max(Arrival_i - Finish_{i-1}, 0)$$

||| 同 ト (三 ト (三 ト

E

Queuing System Equations

Compute the following:

Simulate Interval_i.

3 Waiting_i =
$$max(Finish_{i-1} - Arrival_i, 0)$$

•
$$Idle_i = max(Arrival_i - Finish_{i-1}, 0)$$

Queuing System Example: Bank Teller

A bank is trying to determine whether it should install one or two drive-through teller windows.

Dist Arrival Intervals:

Dist Service Times:

Arrival Interval	Drobability		Service Time	Probability
		-	2 min	0.1
1 min	0.2			0.4
2 min	0.6		3 min	0.4
			4 min	0.2
3 min	0.1		5 min	0.2
4 min	0.1			0.1
	<u> </u>		5 min	U.1

- Assume customers enter shorter line, in case of a tie randomly pick a line with equal probability
- Simulate a one-teller system
- Simulate a two-teller system
- Compute average queue length, waiting time, utilization

DQC

イロト イポト イヨト イヨト

3

Queuing System Equations

- Simulate Interval;
- 2 Arrival_i = Arrival_{i-1} + Interval_i
- 3 Wait1_i = max[max(TimeOut1₀ : TimeOut1_{i-1}) Arrival_{i-1},0]
- Wait2_i = max [max(TimeOut2₀ : TimeOut2_{i-1}) Arrival_{i-1},0]
- **5** $Idle1_i = max[Arrival_{i-1} max(TimeOut1_0 : TimeOut1_{i-1}), 0]$
- **6** $Idle_{i} = max[Arrival_{i-1} max(TimeOut_{0} : TimeOut_{i-1}), 0]$
- **(**) Length $1_i = \text{COUNTIF}(\text{TimeOut}1_0 : \text{TimeOut}1_{i-1}, ">" & \text{Arrival}_i)$
- **(a)** Length2_i = COUNTIF(TimeOut2₀ : TimeOut2_{i-1}," >" &Arrival_i)
- 9 LineChoice_i = nested IF() to compare Length1_i and Length2_i
- Simulate ServiceTime_i
- 2 TotalTime_i = ActualWait_i + ServiceTime_i
- \bigcirc TimeOut1_i = IF(LineChoice_i = 1, Arrival_i + TotalTime_i, 0)
- TimeOut2_i = IF(LineChoice_i = 2, Arrival_i + TotalTime_i, 0)

$10/\ 12$

Exercise: Milk Demand Exercise: Oil Tankers Queue

Exercise: Milk Demand

- A local organic grocery store orders 16 cases of milk from a dairy on a weekly basis.
- Store pays \$10 per case of milk
- Store sells milk for \$16 per case
- Inventory cost is \$0.50 per case per week
- Shortage cost is \$1 per case per week

Simulate inventory, sales, shortages, surpluses, revenue, costs, and profits for two years, and report averages.

Probability Distribution:

Demand	Prob.
15	0.20
16	0.25
17	0.40
18	0.15

Exercise: Milk Demand Exercise: Oil Tankers Queue

Exercise: Oil Tanker Queue

Oil tankers arrive at a single loading dock at random intervals and the time is takes to fill a tanker with oil and prepare it for sea is randomly determined.

Dist Arrival Intervals:

Arrival Interval	Probability
1 day	0.05
2 days	0.10
3 days	0.20
4 days	0.3
5 days	0.2
6 days	0.1
7 days	0.05

~	•	
5	ervice	Times:
-	0.0.00	

Service Time	Probability
3 days	0.1
4 days	0.2
5 days	0.4
6 days	0.3

Simulate movement of 400 tankers to and from the loading dock and compute the average wait time and queue length.