Simulation and Queing Theory

BUS 735: Business Decision Making and Research

Goals and Agenda

Learning Objective	Active Learning Activity
Learn how to simulate probabil-	Example problem in Excel
ity distribution	
Learn how to simulate inven-	Example problem in Excel
tory systems.	
Learn how to simulate queuing	Two example problems in Excel
systems.	
Practice makes perfect	Exercises in Excel
More practice	Read Chapter 12, pp 488-508

1 Simulating Probability Distributions

Simulating Probability Distributions

- Simulation: drawing random numbers from a probability distribution.
- Monte Carlo Simulation: Use simulated data to simply compute means, standard deviations, etc.
- More complicated computations can be made based on the simulated data.
 - Create linear combinations of variables.
 - Take ratios!

Example

- Suppose the MacGuys sell somewhere between 0 and 4 computers each week from their store, according to the probability distribution to the right.
- Simulate computer demand
- Computers sell for \$4,300 each.
- Compute the mean and standard deviation for weekly demand for computers.
- Compute the mean and standard deviation for weekly revenue.

ProbabilityDistribution:

Demand	Prob.
0	0.2
1	0.4
2	0.2
3	0.1
4	0.1

Something More Complicated

- Suppose there is an inventory cost of \$50 per computer.
- If the company falls short, the company not only fails to make a sale, but is estimated to loose \$500 in future revenue per computer, due to making a customer unhappy.
- Suppose the company orders 1 computer per week.
- Simulate demand for two years (104 weeks), simulate inventory, shortage, and surplus, and revenue

Inventory System of Equations

Simulate inventory, sales, surplus, and shortage:

 $\begin{aligned} \text{Inventory}_t &= \text{Inventory}_{t-1} - \text{Sales}_{t-1} + 1\\ \text{Sales}_t &= \min(\text{Inventory}_t, \text{Demand}_t)\\ \text{Surplus}_t &= \text{Inventory}_t - \text{Sales}_t\\ \text{Shortage}_t &= \text{Demand}_t - \text{Sales}_t \end{aligned}$

Simulate revenue with \$50 inventory cost, \$500 shortage cost:

 $\operatorname{Revenue}_{t} = (\$4, 300) \operatorname{Sales}_{t} - (\$50) \operatorname{Inventory}_{t} - (\$500) \operatorname{Shortage}_{t}$

2 Queuing Models

2.1 Example 1: Denim Factory

Queuing System Example: Denim Factory

- A denim manufacturing facility receives yarn at varying time intervals (according to the probability distribution in the following slide).
- Then it dyes the yarn, which takes varying amounts of time according to the second probability distribution (according to the second probability distribution on the following slide).

- If a batch of yarn arrives at the facility, it is possible it must wait for the previous batch to complete.
- It is possible that facility sits not utilized while it waits for another batch of yarn to arrive.
- Calculate the mean and std dev for the total time in the facility (waiting time + dying time).
- Calculate the mean and std dev for the waiting time.
- Calculate the average number of days per month the facility is idle.

Queuing System Probability Distributions

	Arrival Interval	Probability
	1 day	0.2
Distribution of Arrival Intervals:	$2 \mathrm{days}$	0.4
	3 days	0.3
	4 days	0.1

Distribution of Dying Times:	Dying Time	Probability
	$0.5 \mathrm{days}$	0.2
	$1 \mathrm{day}$	0.5
	2 days	0.3

Queuing System Equations

Compute the following:

- 1. Simulate $Interval_i$.
- 2. $\operatorname{Arrival}_{i} = \operatorname{Arrival}_{i-1} + \operatorname{Interval}_{i}$
- 3. Waiting_i = $max(Finish_{i-1} Arrival_i, 0)$
- 4. $Idle_i = max(Arrival_i Finish_{i-1}, 0)$
- 5. Simulate $Dying_i$.
- 6. $\text{TimeSystem}_i = \text{Waiting}_i + \text{Dying}_i$
- 7. $Finish_i = Arrival_i + TimeSystem_i$

2.2 Example 2: Bank Teller Queue

Queuing System Example: Bank Teller

A bank is trying to determine whether it should install one or two drivethrough teller windows.

Arrival Interval	Probability
$1 \min$	0.2
$2 \min$	0.6
$3 \min$	0.1
$4 \min$	0.1
	$\begin{array}{c} 2 \\ 2 \\ 3 \\ min \end{array}$

Dist Service Times:	Service Time	Probability
	$2 \min$	0.1
	$3 \min$	0.4
	$4 \min$	0.2
	$5 \min$	0.2
	$5 \min$	0.1

- Assume customers enter shorter line, in case of a tie randomly pick a line with equal probability
- Simulate a one-teller system
- Simulate a two-teller system
- Compute average queue length, waiting time, utilization

Queuing System Equations

- 1. Simulate $Interval_i$
- 2. Arrival_i = Arrival_{i-1} + Interval_i
- 3. Wait1_i = max [max(TimeOut1₀ : TimeOut1_{i-1}) Arrival_{i-1}, 0]
- 4. Wait2_i = max [max(TimeOut2₀ : TimeOut2_{i-1}) Arrival_{i-1}, 0]
- 5. Idle1_i = max [Arrival_{i-1} max(TimeOut1₀ : TimeOut1_{i-1}), 0]
- 6. Idle2_i = max [Arrival_{i-1} max(TimeOut2₀ : TimeOut2_{i-1}), 0]
- 7. Length 1_i = COUNTIF(TimeOut1₀ : TimeOut1_{i-1}, '' >'' & Arrival_i)
- 8. Length $2_i = \text{COUNTIF}(\text{TimeOut}2_0 : \text{TimeOut}2_{i-1}, ">" & \text{Arrival}_i)$
- 9. LineChoice_i = nested IF() to compare Length1_i and Length2_i
- 10. ActualWait_i = IF(LineChoice_i = 1, Wait1_i, Wait2_i)
- 11. Simulate ServiceTime _i
- 12. TotalTime_i = ActualWait_i + ServiceTime_i
- 13. TimeOut1_i = IF(LineChoice_i = 1, Arrival_i + TotalTime_i, 0)
- 14. TimeOut2_i = IF(LineChoice_i = 2, Arrival_i + TotalTime_i, 0)

3 Exercises

3.1 Exercise: Milk Demand

Exercise: Milk Demand

- A local organic grocery store orders 16 cases of milk from a dairy on a weekly basis.
- Store pays \$10 per case of milk
- Store sells milk for \$16 per case
- Inventory cost is \$0.50 per case per week
- Shortage cost is \$1 per case per week

	Demand	Prob.
ProbabilityDistribution:	15	0.20
	16	0.25
	17	0.40
	18	0.15

Simulate inventory, sales, shortages, surpluses, revenue, costs, and profits for two years, and report averages.

3.2 Exercise: Oil Tankers Queue

Exercise: Oil Tanker Queue

Oil tankers arrive at a single loading dock at random intervals and the time is takes to fill a tanker with oil and prepare it for sea is randomly determined. Arrival Interval | Probability

Dist Arrival Intervals:	1 day		0.05
	2 days	2 days	
	3 days	3 days	
	4 days	4 days	
	5 days	5 days	
	6 days	6 days	
	$7 \mathrm{days}$		0.05
-	Service Time	Prol	oability
Service Times:	3 days	0.1	
	4 days		0.2
	5 days		0.4
	6 days	6 days 0	
_			

Simulate movement of 400 tankers to and from the loading dock and compute the average wait time and queue length.