Money Supply Process

Economics 301: Money and Banking
Goals:

- Understand balance sheets of Federal Reserve system and banking system.
- Understand how money is created and multiplied.
- Understand determinants of money supply.

Learning Outcomes:

- LO4: Explain the structure of the Federal Reserve System and the mechanisms in which it controls the money supply.
Goals:
- Understand balance sheets of Federal Reserve system and banking system.
- Understand how money is created and multiplied.
- Understand determinants of money supply.

Learning Outcomes:
- LO4: Explain the structure of the Federal Reserve System and the mechanisms in which it controls the money supply.
Read Hubbard and O’Brien, Chapter 14.
Federal Reserve System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government securities</td>
<td>Currency in circulation</td>
</tr>
<tr>
<td>Discount loans</td>
<td>Reserves</td>
</tr>
<tr>
<td>Corporate securities</td>
<td></td>
</tr>
<tr>
<td>Mortgage backed securities</td>
<td></td>
</tr>
</tbody>
</table>

- **Assets**: securities purchased by the Federal Reserve.
- **Reserves**:
 - Banks have accounts at the Fed in which they hold deposits to be used to meet their own depositors needs.
 - Reserves = Deposits of banks at Fed + currency physically held by banks in vaults.
Federal Reserve Balance Sheet

Federal Reserve System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government securities</td>
<td>Currency in circulation</td>
</tr>
<tr>
<td>Discount loans</td>
<td>Reserves</td>
</tr>
<tr>
<td>Corporate securities</td>
<td></td>
</tr>
<tr>
<td>Mortgage backed securities</td>
<td></td>
</tr>
</tbody>
</table>

- **Assets**: securities purchased by the Federal Reserve.
- **Reserves**:
 - Banks have accounts at the Fed in which they hold deposits to be used to meet their own depositors needs.
 - Reserves = Deposits of banks at Fed + currency physically held by banks in vaults.
Federal Reserve System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government securities</td>
<td>Currency in circulation</td>
</tr>
<tr>
<td>Discount loans</td>
<td>Reserves</td>
</tr>
<tr>
<td>Corporate securities</td>
<td></td>
</tr>
<tr>
<td>Mortgage backed securities</td>
<td></td>
</tr>
</tbody>
</table>

- **Assets**: securities purchased by the Federal Reserve.
- **Reserves**:
 - Banks have accounts at the Fed in which they hold deposits to be used to meet their own depositors needs.
 - Reserves = Deposits of banks at Fed + currency physically held by banks in vaults.
Federal Reserve Balance Sheet

<table>
<thead>
<tr>
<th>Federal Reserve System</th>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Government securities</td>
<td>Currency in circulation</td>
</tr>
<tr>
<td></td>
<td>Discount loans</td>
<td>Reserves</td>
</tr>
<tr>
<td></td>
<td>Corporate securities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortgage backed securities</td>
<td></td>
</tr>
</tbody>
</table>

- **Assets**: securities purchased by the Federal Reserve.
- **Reserves**: Banks have accounts at the Fed in which they hold deposits to be used to meet their own depositors needs.
- Reserves = Deposits of banks at Fed + currency physically held by banks in vaults.
Banking System Balance Sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government securities</td>
<td>Checkable deposits</td>
</tr>
<tr>
<td>Personal/Corporate Loans</td>
<td>Other types of deposits</td>
</tr>
<tr>
<td>Loaned federal funds</td>
<td>Borrowed federal funds</td>
</tr>
<tr>
<td>Reserves</td>
<td>Discount Loans</td>
</tr>
<tr>
<td>Physical Collateral on Defaults</td>
<td></td>
</tr>
</tbody>
</table>
Monetary base = currency in circulation + total reserves in banking system (MB = C + R).

Open market purchase of $100 in Treasury Bills from Banking system.

<table>
<thead>
<tr>
<th>Banking System</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>Liabilities</td>
</tr>
<tr>
<td>Government Securities</td>
<td>-$100</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Federal Reserve System</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>Liabilities</td>
</tr>
<tr>
<td>Government Securities</td>
<td>+$100</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$100</td>
</tr>
</tbody>
</table>
Open Market Operations

- Monetary base = currency in circulation + total reserves in banking system (MB = C + R).
- Open market purchase of $100 in Treasury Bills from Banking system.

<table>
<thead>
<tr>
<th>Banking System</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Securities</td>
<td>-$100</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Federal Reserve System</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Securities</td>
<td>+$100</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$100</td>
</tr>
</tbody>
</table>
- Monetary base = currency in circulation + total reserves in banking system (MB = C + R).
- Open market purchase of $100 in Treasury Bills from Banking system.

Banking System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Securities</td>
<td>-$100</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$100</td>
</tr>
</tbody>
</table>

Federal Reserve System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Securities</td>
<td>+$100</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$100</td>
</tr>
</tbody>
</table>
- Monetary base = currency in circulation + total reserves in banking system (MB = C + R).
- Open market purchase of $100 in Treasury Bills from Banking system.

Banking System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Securities</td>
<td>-$100</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$100</td>
</tr>
</tbody>
</table>

Federal Reserve System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Securities</td>
<td>+$100</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$100</td>
</tr>
</tbody>
</table>
Open market purchase of $100 from non-bank public.

Suppose public deposits $80 of proceeds in banks and holds $20 currency.

<table>
<thead>
<tr>
<th>Non-bank Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
</tr>
<tr>
<td>Government Securities</td>
</tr>
<tr>
<td>Checkable Deposits</td>
</tr>
<tr>
<td>Currency</td>
</tr>
</tbody>
</table>
1. Open market purchase of $100 from non-bank public.
2. Suppose public deposits $80 of proceeds in banks and holds $20 currency.

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Securities</td>
<td>-$100</td>
</tr>
<tr>
<td>Checkable Deposits</td>
<td>+=$80</td>
</tr>
<tr>
<td>Currency</td>
<td>+=$20</td>
</tr>
</tbody>
</table>
Open market purchase of $100 from non-bank public.
Suppose public deposits $80 of proceeds in banks and holds $20 currency.

<table>
<thead>
<tr>
<th>Non-bank Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
</tr>
<tr>
<td>Government Securities</td>
</tr>
<tr>
<td>Checkable Deposits</td>
</tr>
<tr>
<td>Currency</td>
</tr>
</tbody>
</table>
Open market purchase of $100 from non-bank public.

Suppose public deposits $80 of proceeds in banks and holds $20 currency.

Banking System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserves</td>
<td>+$80</td>
</tr>
<tr>
<td>Checkable Deposits</td>
<td>+$80</td>
</tr>
</tbody>
</table>

Federal Reserve System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Securities</td>
<td>+$100</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$80</td>
</tr>
<tr>
<td>Currency in circulation</td>
<td>+$20</td>
</tr>
</tbody>
</table>
- Open market purchase of $100 from non-bank public.
- Suppose public deposits $80 of proceeds in banks and holds $20 currency.

Banking System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserves</td>
<td>+$80</td>
</tr>
<tr>
<td>Checkable Deposits</td>
<td>+$80</td>
</tr>
</tbody>
</table>

Federal Reserve System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Securities</td>
<td>+$100</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$80</td>
</tr>
<tr>
<td>Currency in circulation</td>
<td>+$20</td>
</tr>
</tbody>
</table>
Open market purchase of $100 from non-bank public.
Suppose public deposits $80 of proceeds in banks and holds $20 currency.

Banking System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserves</td>
<td>+$80</td>
</tr>
<tr>
<td>Checkable Deposits</td>
<td>+$80</td>
</tr>
</tbody>
</table>

Federal Reserve System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Securities</td>
<td>+$100</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$80</td>
</tr>
<tr>
<td>Currency in circulation</td>
<td>+$20</td>
</tr>
</tbody>
</table>
Discount Loan: loan in which a bank or financial institution borrows funds directly from the Federal Reserve.

Suppose Acme Bank makes a $200 discount loan.

<table>
<thead>
<tr>
<th>Assets</th>
<th>Banking System</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserves</td>
<td>+$200</td>
<td>Discount Loans</td>
</tr>
<tr>
<td>Discount Loans</td>
<td></td>
<td>+$200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assets</th>
<th>Federal Reserve System</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount Loans</td>
<td>+$200</td>
<td>Reserves</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+$200</td>
</tr>
</tbody>
</table>
Discount Loan: loan in which a bank or financial institution borrows funds directly from the Federal Reserve.

Suppose Acme Bank makes a $200 discount loan.

<table>
<thead>
<tr>
<th>Banking System</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>Liabilities</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$200</td>
</tr>
<tr>
<td>Discount Loans</td>
<td>+$200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Federal Reserve System</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>Liabilities</td>
</tr>
<tr>
<td>Discount Loans</td>
<td>+$200</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$200</td>
</tr>
</tbody>
</table>
Discount Loan: loan in which a bank or financial institution borrows funds directly from the Federal Reserve.

Suppose Acme Bank makes a $200 discount loan.

<table>
<thead>
<tr>
<th>Banking System</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserves</td>
<td>+$200</td>
</tr>
<tr>
<td>Discount Loans</td>
<td>+$200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Federal Reserve System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
</tr>
<tr>
<td>Discount Loans</td>
</tr>
<tr>
<td>Liabilities</td>
</tr>
<tr>
<td>Reserves</td>
</tr>
</tbody>
</table>
Discount loan: loan in which a bank or financial institution borrows funds directly from the Federal Reserve.

Suppose Acme Bank makes a $200 discount loan.

Banking System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserves</td>
<td>+$200</td>
</tr>
<tr>
<td>Discount Loans</td>
<td></td>
</tr>
</tbody>
</table>

Federal Reserve System

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount Loans</td>
<td>+$200</td>
</tr>
<tr>
<td>Reserves</td>
<td>+$200</td>
</tr>
</tbody>
</table>
Suppose the required reserve ratio is 5% and banks hold no excess reserves.

- Suppose the Federal Reserve (Fed) makes a $100 open market purchase of bonds.
- Increases banks’ reserves by $100, they in turn loan full amount to non-bank public.
- Non-bank public borrows $100 and spends it.
- $100 expenditure becomes $100 income for others in non-bank public.
- Suppose non-bank public holds zero currency, puts full amount in checkable deposits.
Suppose required reserve ratio is 5% and banks hold no excess reserves.

Suppose Fed makes a $100 open market purchase of bonds.

- Increases banks’ reserves by $100, they in turn loan full amount to non-bank public.
- Non-bank public borrows $100 and spends it.
- $100 expenditure becomes $100 income for others in non-bank public.
- Suppose non-bank public holds zero currency, puts full amount in checkable deposits.
Suppose required reserve ratio is 5% and banks hold no excess reserves.

Suppose Fed makes a $100 open market purchase of bonds.

Increases banks’ reserves by $100, they in turn loan full amount to non-bank public.

Non-bank public borrows $100 and spends it.

$100 expenditure becomes $100 income for others in non-bank public.

Suppose non-bank public holds zero currency, puts full amount in checkable deposits.
Suppose **required reserve ratio** is 5% and banks hold no excess reserves.

Suppose Fed makes a $100 open market purchase of bonds.

Increases banks’ reserves by $100, they in turn loan full amount to non-bank public.

Non-bank public borrows $100 and spends it.

$100 expenditure becomes $100 income for others in non-bank public.

Suppose non-bank public holds zero currency, puts full amount in checkable deposits.
Suppose required reserve ratio is 5% and banks hold no excess reserves.

Suppose Fed makes a $100 open market purchase of bonds.

Increases banks’ reserves by $100, they in turn loan full amount to non-bank public.

Non-bank public borrows $100 and spends it.

$100 expenditure becomes $100 income for others in non-bank public.

Suppose non-bank public holds zero currency, puts full amount in checkable deposits.
Suppose required reserve ratio is 5% and banks hold no excess reserves.

Suppose Fed makes a $100 open market purchase of bonds.

Increases banks’ reserves by $100, they in turn loan full amount to non-bank public.

Non-bank public borrows $100 and spends it.

$100 expenditure becomes $100 income for others in non-bank public.

Suppose non-bank public holds zero currency, puts full amount in checkable deposits.
Banks deposits increase by $100.

Put puts $(0.05)(100) = 5$ in reserves (minimum required), loans out remaining 95.

Non-bank public borrows 95, this becomes income for others, which ends up in deposits.

Banks put $(0.05)(95) = 4.75$ in reserves, loans out remaining 90.25.

Non-bank public borrows 90.25, this becomes income for others, which ends up in deposits again.

Banks put $(0.05)(90.25) = 4.51$ in reserves, loans out remaining $85.74...
Banks deposits increase by $100.

Put puts \((0.05)(100) = 5\) in reserves (minimum required), loans out remaining $95.

Non-bank public borrows $95, this becomes income for others, which ends up in deposits.

Banks put \((0.05)(95) = 4.75\) in reserves, loans out remaining $90.25.

Non-bank public borrows $90.25, this becomes income for others, which ends up in deposits again.

Banks put \((0.05)(90.25) = 4.51\) in reserves, loans out remaining $85.74...
Banks deposits increase by $100.

Put puts (0.05)($100) = $5 in reserves (minimum required), loans out remaining $95.

Non-bank public borrows $95, this becomes income for others, which ends up in deposits.

Banks put (0.05)($95) = $4.75 in reserves, loans out remaining $90.25.

Non-bank public borrows $90.25, this becomes income for others, which ends up in deposits again.

Banks put (0.05)($90.25) = $4.51 in reserves, loans out remaining $85.74...
Deposit Creation (continued)

- Banks deposits increase by $100.
- Put puts
 \[(0.05)(100) = 5\] in reserves (minimum required),
 loans out remaining $95.
- Non-bank public borrows $95, this becomes income for others,
 which ends up in deposits.
- Banks put
 \[(0.05)(95) = 4.75\] in reserves, loans out remaining $90.25.
- Non-bank public borrows $90.25, this becomes income for others,
 which ends up in deposits again.
- Banks put
 \[(0.05)(90.25) = 4.51\] in reserves, loans out remaining $85.74...
Deposit Creation (continued)

- Banks deposits increase by $100.
- Put puts \((0.05)(100) = 5\) in reserves (minimum required), loans out remaining $95.
- Non-bank public borrows $95, this becomes income for others, which ends up in deposits.
- Banks put \((0.05)(95) = 4.75\) in reserves, loans out remaining $90.25.
- Non-bank public borrows $90.25, this becomes income for others, which ends up in deposits again.
- Banks put \((0.05)(90.25) = 4.51\) in reserves, loans out remaining $85.74...
Banks deposits increase by $100.

Put puts \((0.05)(\$100) = \$5\) in reserves (minimum required), loans out remaining $95.

Non-bank public borrows $95, this becomes income for others, which ends up in deposits.

Banks put \((0.05)(\$95) = \$4.75\) in reserves, loans out remaining $90.25.

Non-bank public borrows $90.25, this becomes income for others, which ends up in deposits again.

Banks put \((0.05)(\$90.25) = \$4.51\) in reserves, loans out remaining $85.74...
A single $100 open market purchase of bonds created an increase of deposits equal to...

\[\Delta D = 100 + 95 + 90.25 + 85.74 + \ldots \]

Let \(\Delta R \) denote initial change in reserves ($100), \(r \) denote required reserve ratio.

\[\Delta D = \Delta R + (1 - r) \Delta R + (1 - r)^2 \Delta R + (1 - r)^3 \Delta R + \ldots \]

Can you simply this expression? How much larger is change in deposits compared to open market purchase?
A single $100 open market purchase of bonds created an increase of deposits equal to...

\[\Delta D = $100 + 95 + 90.25 + 85.74 + \ldots \]

Let \(\Delta R \) denote initial change in reserves ($100), \(r \) denote required reserve ratio.

\[\Delta D = \Delta R + (1 - r)\Delta R + (1 - r)^2\Delta R + (1 - r)^3\Delta R + \ldots \]

Can you simply this expression? How much larger is change in deposits compared to open market purchase?
A single $100 open market purchase of bonds created an increase of deposits equal to...

\[\Delta D = $100 + 95 + 90.25 + 85.74 + \ldots \]

Let \(\Delta R \) denote initial change in reserves ($100), \(r \) denote required reserve ratio.

\[\Delta D = \Delta R + (1 - r)\Delta R + (1 - r)^2\Delta R + (1 - r)^3\Delta R + \ldots \]

Can you simply this expression? How much larger is change in deposits compared to open market purchase?
- Required reserves = \((\text{required reserve ratio})(\text{deposits})\).
- Recall, we assume Actual reserves = Required Reserves.

\[R = rD \]

\[D = \frac{1}{r}R \]

\[\Delta D = \frac{1}{r} \Delta R \]

- Money multiplier = \(m = \frac{1}{r}\).
- Money Supply = (money multiplier) (monetary base).
Money Multiplier Algebra

- Required reserves = (required reserve ratio)(deposits).
- Recall, we assume Actual reserves = Required Reserves.

\[R = rD \]

\[D = \frac{1}{r}R \]

\[\Delta D = \frac{1}{r}\Delta R \]

- Money multiplier = \(m = \frac{1}{r} \).
- Money Supply = (money multiplier) (monetary base).
Money Multiplier Algebra

- Required reserves = (required reserve ratio)(deposits).
- Recall, we assume Actual reserves = Required Reserves.

\[R = rD \]

\[D = \frac{1}{r}R \]

\[\Delta D = \frac{1}{r}\Delta R \]

- Money multiplier = \(m = \frac{1}{r} \).
- Money Supply = (money multiplier) (monetary base).
Required reserves = (required reserve ratio)(deposits).

Recall, we assume Actual reserves = Required Reserves.

\[R = rD \]

\[D = \frac{1}{r}R \]

\[\Delta D = \frac{1}{r} \Delta R \]

Money multiplier = \(m = \frac{1}{r} \).

Money Supply = (money multiplier) (monetary base).
Money Multiplier Algebra

- Required reserves = (required reserve ratio)(deposits).
- Recall, we assume Actual reserves = Required Reserves.

\[R = rD \]

\[D = \frac{1}{r}R \]

\[\Delta D = \frac{1}{r} \Delta R \]

- Money multiplier = \(m = \frac{1}{r} \).
- Money Supply = (money multiplier) (monetary base).
Required reserves = (required reserve ratio)(deposits).
Recall, we assume Actual reserves = Required Reserves.

\[R = rD \]

\[D = \frac{1}{r}R \]

\[\Delta D = \frac{1}{r}\Delta R \]

Money multiplier = \(m = \frac{1}{r} \).
Money Supply = (money multiplier) (monetary base).
Money Multiplier Algebra

- Required reserves = (required reserve ratio)(deposits).
- Recall, we assume Actual reserves = Required Reserves.

\[R = rD \]

\[D = \frac{1}{r} R \]

\[\Delta D = \frac{1}{r} \Delta R \]

- Money multiplier = \(m = \frac{1}{r} \).
- Money Supply = (money multiplier) (monetary base).
Suppose people do hold currency, banks hold excess reserves.

Notation:
- C: Currency holdings.
- D: Deposits.
- RR: Required reserves.
- ER: Excess reserves.
- R: Actual reserves.
- MB: Monetary base.

For simplicity, assume ratios of currency holdings and excess reserves are constant:
- \(c = \frac{C}{D} = \) currency ratio.
- \(e = \frac{ER}{D} = \) excess reserves ratio.

Use \(MB = R + C \) and \(M1 = C + D \) to derive money multiplier.
Suppose people do hold currency, banks hold excess reserves.

Notation:
- C: Currency holdings.
- D: Deposits.
- RR: Required reserves.
- ER: Excess reserves.
- R: Actual reserves.
- MB: Monetary base.

For simplicity, assume ratios of currency holdings and excess reserves are constant:
- \(c = \frac{C}{D} \) = currency ratio.
- \(e = \frac{ER}{D} \) = excess reserves ratio.

Use \(MB = R + C \) and \(M1 = C + D \) to derive money multiplier.
Suppose people do hold currency, banks hold excess reserves.

Notation:
- C: Currency holdings.
- D: Deposits.
- RR: Required reserves.
- ER: Excess reserves.
- R: Actual reserves.
- MB: Monetary base.

For simplicity, assume ratios of currency holdings and excess reserves are constant:
- $c = C/D = \text{currency ratio.}$
- $e = ER/D = \text{excess reserves ratio.}$

Use $\text{MB} = R + C$ and $\text{M1} = C + D$ to derive money multiplier.
Suppose people do hold currency, banks hold excess reserves.

Notation:
- C: Currency holdings.
- D: Deposits.
- RR: Required reserves.
- ER: Excess reserves.
- R: Actual reserves.
- MB: Monetary base.

For simplicity, assume ratios of currency holdings and excess reserves are constant:
- \(c = C/D \) = currency ratio.
- \(e = ER/D \) = excess reserves ratio.

Use \(MB = R+C \) and \(M1 = C+D \) to derive money multiplier.
General Money Multiplier

\[m = \frac{1 + c}{r + e + c} \]

Impact on Money Supply?
- If there is a decrease in the currency ratio (suppose from a fraction of total money that people hold in currency)?
- If there is an increase in the fraction of deposits that banks keep in excess reserves?
- If there is an increase in the required reserve ratio?
General Money Multiplier

\[m = \frac{1 + c}{r + e + c} \]

Impact on Money Supply?

- If there is a *decrease* in the currency ratio (suppose from a fraction of total money that people hold in currency)?
- If there is an *increase* in the fraction of deposits that banks keep in excess reserves?
- If there is an *increase* in the required reserve ratio?
General Money Multiplier

\[m = \frac{1 + c}{r + e + c} \]

Impact on Money Supply?

- If there is a decrease in the currency ratio (suppose from a fraction of total money that people hold in currency)?
- If there is an increase in the fraction of deposits that banks keep in excess reserves?
- If there is an increase in the required reserve ratio?
General Money Multiplier

\[m = \frac{1 + c}{r + e + c} \]

Impact on Money Supply?

- If there is a \textit{decrease} in the currency ratio (suppose from a fraction of total money that people hold in currency)?
- If there is an \textit{increase} in the fraction of deposits that banks keep in excess reserves?
- If there is an \textit{increase} in the required reserve ratio?
General Money Multiplier

$$m = \frac{1 + c}{r + e + c}$$

Impact on Money Supply?

- If there is a decrease in the currency ratio (suppose from a fraction of total money that people hold in currency)?
- If there is an increase in the fraction of deposits that banks keep in excess reserves?
- If there is an increase in the required reserve ratio?
General Money Multiplier Problem

Suppose the required reserve ratio is 5%, banks hold an extra 8% of deposits in excess reserves, and consumers hold currency balances that are about 2% of what they hold in deposits in banks. Suppose the Fed makes an open market purchase of $100 million of government bonds.

1. Compute the impact on the monetary base.
2. Compute the impact on the M1 money supply.
3. Compute the impact on the amount of deposits held in the banking sector.
4. Compute the impact on required reserves, excess reserves, and total reserves held by banks.
5. Describe and illustrate the impact on the equilibrium interest rate.
Factors affecting money supply:

- Open market operations (affect non-borrowed monetary base).
- Changes in required reserve ratio.
- Changes in banks’ desire to hold excess reserves.
- Changes in consumers’ desire to hold currency versus deposits.
- Changes in borrowed reserves.
Factors affecting money supply:

- Open market operations (affect non-borrowed monetary base).
- Changes in required reserve ratio.
- Changes in banks' desire to hold excess reserves.
- Changes in consumers' desire to hold currency versus deposits.
- Changes in borrowed reserves.
Factors affecting money supply:

- Open market operations (affect non-borrowed monetary base).
- Changes in required reserve ratio.
- Changes in banks desire to hold excess reserves.
- Changes in consumers’ desire to hold currency versus deposits.
- Changes in borrowed reserves.
Factors affecting money supply:
- Open market operations (affect non-borrowed monetary base).
- Changes in required reserve ratio.
- Changes in banks desire to hold excess reserves.
- Changes in consumers’ desire to hold currency versus deposits.
- Changes in borrowed reserves.
Factors affecting money supply:

- Open market operations (affect non-borrowed monetary base).
- Changes in required reserve ratio.
- Changes in banks desire to hold excess reserves.
- Changes in consumers’ desire to hold currency versus deposits.
- Changes in borrowed reserves.
Typical assumption: central bank exogenously influences money supply through open market operations.

Typical assumption implication for money supply function?

How might excess reserves be influenced by interest rate?

What is the implication for the money supply function?
Typical assumption: central bank exogenously influences money supply through open market operations.

Typical assumption implication for money supply function?

How might excess reserves be influenced by interest rate?

What is the implication for the money supply function?
Typical assumption: central bank exogenously influences money supply through open market operations.

Typical assumption implication for money supply function?

How might excess reserves be influenced by interest rate?

What is the implication for the money supply function?
Typical assumption: central bank exogenously influences money supply through open market operations.

Typical assumption implication for money supply function?

How might excess reserves be influenced by interest rate?

What is the implication for the money supply function?