Interest Rates, Cash Flows, and Rates of Return

Economics 301: Money and Banking

Goals and Learning Outcomes

- Goals:
- Learn to compute present values, rates of return, rates of return.
- Learning Outcomes:

Goals and Learning Outcomes

- Goals:
- Learn to compute present values, rates of return, rates of return.
- Learning Outcomes:
- LO3: Predict changes in interest rates using fundamental economic theories including present value calculations, behavior towards risk, and supply and demand models of money and bond markets.

Reading and Exercises

- Present values and future values: Chapter 3, pp. 55-63
- Debt instruments: Chapter 3, pp. 63-67
- Yield to maturity: Chapter 3, pp. 68-78
- Rates of return: Chapter 3, pp. 79-83
- Canvas quiz due Wed 11:59 PM.
- Homework/Exercise due Fri 11:59 PM. We will work together in class on Thursday

Cash Flows

- Cash flows: size and timing of payments made for various debt instruments.
- Present value: aka present discounted value, discounts payments made in the future to a current date equivalent.
- Present value depends on assumption for interest rate.

Cash Flows

- Cash flows: size and timing of payments made for various debt instruments.
- Present value: aka present discounted value, discounts payments made in the future to a current date equivalent.
- Present value depends on assumption for interest rate.

Cash Flows

- Cash flows: size and timing of payments made for various debt instruments.
- Present value: aka present discounted value, discounts payments made in the future to a current date equivalent.
- Present value depends on assumption for interest rate.
- Higher interest rates - higher degree of discount.

Cash Flows

- Cash flows: size and timing of payments made for various debt instruments.
- Present value: aka present discounted value, discounts payments made in the future to a current date equivalent.
- Present value depends on assumption for interest rate.
- Higher interest rates - higher degree of discount.

Simple Loan Example

- Simple loan: lender provides funds to borrower, borrower pays back principal and interest at maturity date.
- Suppose interest rate is 5% (denote with i), simple loan of $\$ 100$ (denote with P).
- Balance (denote with A) with a one year maturity:
- Let it ride for another year...
- At the end of n years, we have

Simple Loan Example

- Simple loan: lender provides funds to borrower, borrower pays back principal and interest at maturity date.
- Suppose interest rate is 5% (denote with i), simple loan of $\$ 100$ (denote with P).
- Balance (denote with A) with a one year maturity:
- Let it ride for another year...
- At the end of n years, we have

Simple Loan Example

- Simple loan: lender provides funds to borrower, borrower pays back principal and interest at maturity date.
- Suppose interest rate is 5% (denote with i), simple loan of $\$ 100$ (denote with P).
- Balance (denote with A) with a one year maturity:
- $A_{1}=P(1+i)=\$ 100(1+0.05)=\$ 105$.
- Let it ride for another year..
- At the end of n years, we have

Simple Loan Example

- Simple loan: lender provides funds to borrower, borrower pays back principal and interest at maturity date.
- Suppose interest rate is 5% (denote with i), simple loan of $\$ 100$ (denote with P).
- Balance (denote with A) with a one year maturity:
- $A_{1}=P(1+i)=\$ 100(1+0.05)=\$ 105$.
- Let it ride for another year.
- At the end of n years, we have

Simple Loan Example

- Simple loan: lender provides funds to borrower, borrower pays back principal and interest at maturity date.
- Suppose interest rate is 5% (denote with i), simple loan of $\$ 100$ (denote with P).
- Balance (denote with A) with a one year maturity:
- $A_{1}=P(1+i)=\$ 100(1+0.05)=\$ 105$.
- Let it ride for another year...
$\begin{aligned} &-A_{2}=A_{1}(1+i)=\$ 105(1+0.05)=\$ 110.25 \\ &-A_{2}=P(1+i)(1+i)=P(1+i)^{2}=\$ 100(1+0.05)^{2}=\$ 110.25\end{aligned}$
- At the end of n years, we have

Simple Loan Example

- Simple loan: lender provides funds to borrower, borrower pays back principal and interest at maturity date.
- Suppose interest rate is 5% (denote with i), simple loan of $\$ 100$ (denote with P).
- Balance (denote with A) with a one year maturity:
- $A_{1}=P(1+i)=\$ 100(1+0.05)=\$ 105$.
- Let it ride for another year...
- $A_{2}=A_{1}(1+i)=\$ 105(1+0.05)=\$ 110.25$
- $A_{2}=P(1+i)(1+i)=P(1+i)^{2}=\$ 100(1+0.05)^{2}=\$ 110.25$
- At the end of n years, we have

Simple Loan Example

- Simple loan: lender provides funds to borrower, borrower pays back principal and interest at maturity date.
- Suppose interest rate is 5% (denote with i), simple loan of $\$ 100$ (denote with P).
- Balance (denote with A) with a one year maturity:
- $A_{1}=P(1+i)=\$ 100(1+0.05)=\$ 105$.
- Let it ride for another year...
- $A_{2}=A_{1}(1+i)=\$ 105(1+0.05)=\$ 110.25$
- $A_{2}=P(1+i)(1+i)=P(1+i)^{2}=\$ 100(1+0.05)^{2}=\$ 110.25$
- At the end of n years, we have

Simple Loan Example

- Simple loan: lender provides funds to borrower, borrower pays back principal and interest at maturity date.
- Suppose interest rate is 5% (denote with i), simple loan of $\$ 100$ (denote with P).
- Balance (denote with A) with a one year maturity:
- $A_{1}=P(1+i)=\$ 100(1+0.05)=\$ 105$.
- Let it ride for another year...
- $A_{2}=A_{1}(1+i)=\$ 105(1+0.05)=\$ 110.25$
- $A_{2}=P(1+i)(1+i)=P(1+i)^{2}=\$ 100(1+0.05)^{2}=\$ 110.25$
- At the end of n years, we have
- $A_{n}=P(1+i)^{n}$.

Simple Loan Example

- Simple loan: lender provides funds to borrower, borrower pays back principal and interest at maturity date.
- Suppose interest rate is 5% (denote with i), simple loan of $\$ 100$ (denote with P).
- Balance (denote with A) with a one year maturity:
- $A_{1}=P(1+i)=\$ 100(1+0.05)=\$ 105$.
- Let it ride for another year...
- $A_{2}=A_{1}(1+i)=\$ 105(1+0.05)=\$ 110.25$
- $A_{2}=P(1+i)(1+i)=P(1+i)^{2}=\$ 100(1+0.05)^{2}=\$ 110.25$
- At the end of n years, we have
- $A_{n}=P(1+i)^{n}$.

Present Value

- Present value: indifferent between $\$ 100$ today, $\$ 105$ next year, or $\$ 110.25$ in two years.
- Given future cash flow of $\$ 105$ or $\$ 110.25$, respectively, the present value is,
- General formula,
- Example: what is the present value of $\$ 100,000$ to be paid in 30 years if the interest rate is 4% ?

Present Value

- Present value: indifferent between $\$ 100$ today, $\$ 105$ next year, or $\$ 110.25$ in two years.
- Given future cash flow of $\$ 105$ or $\$ 110.25$, respectively, the present value is,

$$
\begin{aligned}
& P V=100=\frac{105}{(1+0.05)} \\
& P V=100=\frac{110.25}{(1+0.05)^{2}}
\end{aligned}
$$

- General formula,
- Example: what is the present value of $\$ 100,000$ to be paid in 30 years if the interest rate is 4% ?

Present Value

- Present value: indifferent between $\$ 100$ today, $\$ 105$ next year, or $\$ 110.25$ in two years.
- Given future cash flow of $\$ 105$ or $\$ 110.25$, respectively, the present value is,

$$
\begin{aligned}
& P V=100=\frac{105}{(1+0.05)} \\
& P V=100=\frac{110.25}{(1+0.05)^{2}}
\end{aligned}
$$

- General formula,
- Example: what is the present value of $\$ 100,000$ to be paid in 30 years if the interest rate is 4% ?

Present Value

- Present value: indifferent between $\$ 100$ today, $\$ 105$ next year, or $\$ 110.25$ in two years.
- Given future cash flow of $\$ 105$ or $\$ 110.25$, respectively, the present value is,

$$
\begin{aligned}
& P V=100=\frac{105}{(1+0.05)} \\
& P V=100=\frac{110.25}{(1+0.05)^{2}}
\end{aligned}
$$

- General formula,
- Example: what is the present value of $\$ 100,000$ to be paid in 30 years if the interest rate is 4% ?

Present Value

- Present value: indifferent between $\$ 100$ today, $\$ 105$ next year, or $\$ 110.25$ in two years.
- Given future cash flow of $\$ 105$ or $\$ 110.25$, respectively, the present value is,

$$
\begin{aligned}
& P V=100=\frac{105}{(1+0.05)} \\
& P V=100=\frac{110.25}{(1+0.05)^{2}}
\end{aligned}
$$

- General formula,

$$
P V=\frac{C F_{n}}{(1+i)^{n}}
$$

- Example: what is the present value of $\$ 100,000$ to be paid in 30 years if the interest rate is 4% ?

Present Value

- Present value: indifferent between $\$ 100$ today, $\$ 105$ next year, or $\$ 110.25$ in two years.
- Given future cash flow of $\$ 105$ or $\$ 110.25$, respectively, the present value is,

$$
\begin{aligned}
& P V=100=\frac{105}{(1+0.05)} \\
& P V=100=\frac{110.25}{(1+0.05)^{2}}
\end{aligned}
$$

- General formula,

$$
P V=\frac{C F_{n}}{(1+i)^{n}}
$$

- Example: what is the present value of $\$ 100,000$ to be paid in 30 years if the interest rate is 4% ?

Types of Credit Market Instruments

- Simple loan.
- Fixed-payment loan: borrower makes a fixed payment (that includes interest and principal) each period until maturity date.
- Coupon bond: borrower pays fixed interest payments (coupon payments) until maturity date, pays face value at maturity.
- Discount bond: bought at a price below its face value, makes no payments until maturity date, at which time pays face value.

Types of Credit Market Instruments

- Simple loan.
- Fixed-payment loan: borrower makes a fixed payment (that includes interest and principal) each period until maturity date.
- Coupon bond: borrower pays fixed interest payments (coupon payments) until maturity date, pays face value at maturity.
- Discount bond: bought at a price below its face value, makes no payments until maturity date, at which time pays face value.

Types of Credit Market Instruments

- Simple loan.
- Fixed-payment loan: borrower makes a fixed payment (that includes interest and principal) each period until maturity date.
- Coupon bond: borrower pays fixed interest payments (coupon payments) until maturity date, pays face value at maturity.
- Coupon rate: dollar amount of coupon payments as a percentage of face value. Related to, but not exactly an interest rate.
- Discount bond: bought at a price below its face value, makes no payments until maturity date, at which time pays face value.

Types of Credit Market Instruments

- Simple loan.
- Fixed-payment loan: borrower makes a fixed payment (that includes interest and principal) each period until maturity date.
- Coupon bond: borrower pays fixed interest payments (coupon payments) until maturity date, pays face value at maturity.
- Coupon rate: dollar amount of coupon payments as a percentage of face value. Related to, but not exactly an interest rate.
- Discount bond: bought at a price below its face value, makes no payments until maturity date, at which time pays face value.

Types of Credit Market Instruments

- Simple loan.
- Fixed-payment loan: borrower makes a fixed payment (that includes interest and principal) each period until maturity date.
- Coupon bond: borrower pays fixed interest payments (coupon payments) until maturity date, pays face value at maturity.
- Coupon rate: dollar amount of coupon payments as a percentage of face value. Related to, but not exactly an interest rate.
- Discount bond: bought at a price below its face value, makes no payments until maturity date, at which time pays face value.

Compounded Interest

- Compounded interest: when interest payments are made multiple times in a given period.
- Compounded annually: full interest payment paid out once per year
- Compounded quarterly: payment for $1 / 4$ of interest rate made 4 times per year.
- Compounded monthly: payment for 1/12 of interest rate made 12 times per year.
- Compounded daily: payment for 1/365 of interest rate made 365 times per year.
- Compounded continuously: interest payments constantly made. Occurs in nature.

Compounded Interest

- Compounded interest: when interest payments are made multiple times in a given period.
- Compounded annually: full interest payment paid out once per year.
- Compounded quarterly: payment for $1 / 4$ of interest rate made 4 times per year
- Compounded monthly: payment for $1 / 12$ of interest rate made 12 times per year.
- Compounded daily: payment for $1 / 365$ of interest rate made 365 times per year.
- Compounded continuously: interest payments constantly made. Occurs in nature.

Compounded Interest

- Compounded interest: when interest payments are made multiple times in a given period.
- Compounded annually: full interest payment paid out once per year.
- Compounded quarterly: payment for $1 / 4$ of interest rate made 4 times per year.
- Compounded monthly: payment for 1/12 of interest rate made 12 times per year
- Compounded daily: payment for $1 / 365$ of interest rate made 365 times per year
- Compounded continuously: interest payments constantly made. Occurs in nature.

Compounded Interest

- Compounded interest: when interest payments are made multiple times in a given period.
- Compounded annually: full interest payment paid out once per year.
- Compounded quarterly: payment for $1 / 4$ of interest rate made 4 times per year.
- Compounded monthly: payment for $1 / 12$ of interest rate made 12 times per year.
- Compounded daily: payment for 1/365 of interest rate made 365 times per year
- Compounded continuously: interest payments constantly made. Occurs in nature.

Compounded Interest

- Compounded interest: when interest payments are made multiple times in a given period.
- Compounded annually: full interest payment paid out once per year.
- Compounded quarterly: payment for $1 / 4$ of interest rate made 4 times per year.
- Compounded monthly: payment for $1 / 12$ of interest rate made 12 times per year.
- Compounded daily: payment for $1 / 365$ of interest rate made 365 times per year.
- Compounded continuously: interest payments constantly made. Occurs in nature.

Compounded Interest

- Compounded interest: when interest payments are made multiple times in a given period.
- Compounded annually: full interest payment paid out once per year.
- Compounded quarterly: payment for $1 / 4$ of interest rate made 4 times per year.
- Compounded monthly: payment for $1 / 12$ of interest rate made 12 times per year.
- Compounded daily: payment for $1 / 365$ of interest rate made 365 times per year.
- Compounded continuously: interest payments constantly made. Occurs in nature.

Present Value Computations

- Present value of a stream of cash flows $\left(C F_{t}\right)$ from time $t=0$ (today) to $t=T$:

- Suppose you have an auto loan,

Present Value Computations

- Present value of a stream of cash flows $\left(C F_{t}\right)$ from time $t=0$ (today) to $t=T$:

$$
P V=\sum_{t=0}^{T} \frac{C F_{t}}{(1+i)^{t}}=C F_{0}+\frac{C F_{1}}{1+i}+\frac{C F_{2}}{(1+i)^{2}}+\ldots+\frac{C F_{T}}{(1+i)^{T}}
$$

- Suppose you have an auto loan,

Present Value Computations

- Present value of a stream of cash flows $\left(C F_{t}\right)$ from time $t=0$ (today) to $t=T$:

$$
P V=\sum_{t=0}^{T} \frac{C F_{t}}{(1+i)^{t}}=C F_{0}+\frac{C F_{1}}{1+i}+\frac{C F_{2}}{(1+i)^{2}}+\ldots+\frac{C F_{T}}{(1+i)^{T}}
$$

- Suppose you have an auto loan,
- Annual interest rate is 6% interest.
- Compounded monthly.
- Five year loan.
- Your monthly payment is \$200.
- How much was your car?

Present Value Computations

- The geometric series is a useful mathematical tool in PV computations: If $\beta \in(0,1)$, then,
- Used in present values: $\beta=\frac{1}{1+i}$ which is between 0 and 1 for positive interest rates.
- Used for cash flows that occur every period forever. Eg: Perpetuity, stock dividends?

Present Value Computations

- The geometric series is a useful mathematical tool in PV computations: If $\beta \in(0,1)$, then,

$$
\frac{1}{1-\beta}=1+\beta+\beta^{2}+\beta^{3}+\beta^{4}+\ldots
$$

- Used in present values: $\beta=\frac{1}{1+i}$ which is between 0 and 1 for positive interest rates.
- Used for cash flows that occur every period forever. Eg: Perpetuity, stock dividends?

Present Value Computations

- The geometric series is a useful mathematical tool in PV computations: If $\beta \in(0,1)$, then,

$$
\frac{1}{1-\beta}=1+\beta+\beta^{2}+\beta^{3}+\beta^{4}+\ldots
$$

- Used in present values: $\beta=\frac{1}{1+i}$ which is between 0 and 1 for positive interest rates.
- Used for cash flows that occur every period forever. Eg: Perpetuity, stock dividends?

Present Value Computations

- The geometric series is a useful mathematical tool in PV computations: If $\beta \in(0,1)$, then,

$$
\frac{1}{1-\beta}=1+\beta+\beta^{2}+\beta^{3}+\beta^{4}+\ldots
$$

- Used in present values: $\beta=\frac{1}{1+i}$ which is between 0 and 1 for positive interest rates.
- Used for cash flows that occur every period forever. Eg: Perpetuity, stock dividends?

Present Value Calculations

- Multiply present value $1 /(1-\beta)$ (previous slide) by β^{T} :

Subtract the this equation from $1 /(1-\beta)$ (previous slide):

Used for cash flows that begin in current period (0) through period T-1

- For cash flows beginning in period s and lasting through period T :

Present Value Calculations

- Multiply present value $1 /(1-\beta)$ (previous slide) by β^{T} :

$$
\frac{\beta^{T}}{1-\beta}=\beta^{T}+\beta^{(T+1)}+\beta^{(T+2)}+\beta^{(T+3)}+\ldots
$$

Subtract the this equation from $1 /(1-\beta)$ (previous slide):

Used for cash flows that begin in current period (0) through period T-1

- For cash flows beginning in period s and lasting through period T :

Present Value Calculations

- Multiply present value $1 /(1-\beta)$ (previous slide) by β^{T} :

$$
\frac{\beta^{T}}{1-\beta}=\beta^{T}+\beta^{(T+1)}+\beta^{(T+2)}+\beta^{(T+3)}+\ldots
$$

Subtract the this equation from $1 /(1-\beta)$ (previous slide):

Used for cash flows that begin in current period (0) through period T-1

- For cash flows beginning in period s and lasting through period T

Present Value Calculations

- Multiply present value $1 /(1-\beta)$ (previous slide) by β^{T} :

$$
\frac{\beta^{T}}{1-\beta}=\beta^{T}+\beta^{(T+1)}+\beta^{(T+2)}+\beta^{(T+3)}+\ldots
$$

Subtract the this equation from $1 /(1-\beta)$ (previous slide):

$$
\frac{1-\beta^{T}}{1-\beta}=1+\beta+\beta^{2}+\beta^{3}+\ldots+\beta^{T-1}
$$

Used for cash flows that begin in current period (0) through period T-1

- For cash flows beginning in period s and lasting through period T

Present Value Calculations

- Multiply present value $1 /(1-\beta)$ (previous slide) by β^{T} :

$$
\frac{\beta^{T}}{1-\beta}=\beta^{T}+\beta^{(T+1)}+\beta^{(T+2)}+\beta^{(T+3)}+\ldots
$$

Subtract the this equation from $1 /(1-\beta)$ (previous slide):

$$
\frac{1-\beta^{T}}{1-\beta}=1+\beta+\beta^{2}+\beta^{3}+\ldots+\beta^{T-1}
$$

Used for cash flows that begin in current period (0) through period T-1

- For cash flows beginning in period s and lasting through period T :

Present Value Calculations

- Multiply present value $1 /(1-\beta)$ (previous slide) by β^{T} :

$$
\frac{\beta^{T}}{1-\beta}=\beta^{T}+\beta^{(T+1)}+\beta^{(T+2)}+\beta^{(T+3)}+\ldots
$$

Subtract the this equation from $1 /(1-\beta)$ (previous slide):

$$
\frac{1-\beta^{T}}{1-\beta}=1+\beta+\beta^{2}+\beta^{3}+\ldots+\beta^{T-1}
$$

Used for cash flows that begin in current period (0) through period T-1

- For cash flows beginning in period s and lasting through period T :

Present Value Calculations

- Multiply present value $1 /(1-\beta)$ (previous slide) by β^{T} :

$$
\frac{\beta^{T}}{1-\beta}=\beta^{T}+\beta^{(T+1)}+\beta^{(T+2)}+\beta^{(T+3)}+\ldots
$$

Subtract the this equation from $1 /(1-\beta)$ (previous slide):

$$
\frac{1-\beta^{T}}{1-\beta}=1+\beta+\beta^{2}+\beta^{3}+\ldots+\beta^{T-1}
$$

Used for cash flows that begin in current period (0) through period T-1

- For cash flows beginning in period s and lasting through period T :

$$
\frac{\beta^{s}-\beta^{T+1}}{1-\beta}=\beta^{s}+\beta^{s+1}+\beta^{s+2}+\ldots+\beta^{T}
$$

More Computations

- Compute the present value of coupon bond with
- Face value $\$ 3000$.
- 10 year maturity.
- Coupon rate 6\%.
- Annual payment beginning in one year.
- Prevailing interest rate 5%.
- Compute the present value of a discount bond with,

More Computations

- Compute the present value of coupon bond with
- Face value $\$ 3000$.
- 10 year maturity.
- Coupon rate 6\%.
- Annual payment beginning in one year.
- Prevailing interest rate 5%.
- Compute the present value of a discount bond with,
- Face value $\$ 5000$.
- 5 year maturity.
- Prevailing interest rate 8%.

Yield to Maturity

- Yield to maturity: the annual interest rate that equates the present value of cash flow of payments received from a debt instrument with its current day value.
- Example: yield to maturity for a simple loan.

Yield to Maturity

- Yield to maturity: the annual interest rate that equates the present value of cash flow of payments received from a debt instrument with its current day value.
- Example: yield to maturity for a simple loan.

Yield to Maturity

- Yield to maturity: the annual interest rate that equates the present value of cash flow of payments received from a debt instrument with its current day value.
- Example: yield to maturity for a simple loan.
- PV $=$ Cash borrowed $=\$ 200$.
- CF $=$ Cash flow $=$ payment received after $n=5$ years $\$ 280.51$.

Yield to Maturity

- Yield to maturity: the annual interest rate that equates the present value of cash flow of payments received from a debt instrument with its current day value.
- Example: yield to maturity for a simple loan.
- PV $=$ Cash borrowed $=\$ 200$.
- CF $=$ Cash flow $=$ payment received after $n=5$ years $\$ 280.51$.

Yield to Maturity

- Yield to maturity: the annual interest rate that equates the present value of cash flow of payments received from a debt instrument with its current day value.
- Example: yield to maturity for a simple loan.
- PV $=$ Cash borrowed $=\$ 200$.
- CF $=$ Cash flow $=$ payment received after $n=5$ years $\$ 280.51$.

$$
P V=\frac{C F}{(1+i)^{n}}
$$

$1+i=1.07$

Yield to Maturity

- Yield to maturity: the annual interest rate that equates the present value of cash flow of payments received from a debt instrument with its current day value.
- Example: yield to maturity for a simple loan.
- PV $=$ Cash borrowed $=\$ 200$.
- CF $=$ Cash flow $=$ payment received after $n=5$ years $\$ 280.51$.

$$
P V=\frac{C F}{(1+i)^{n}} \quad \rightarrow \quad 200=\frac{280.51}{(1+i)^{5}}
$$

$1+i=1.07$

- Yield to maturity: the annual interest rate that equates the present value of cash flow of payments received from a debt instrument with its current day value.
- Example: yield to maturity for a simple loan.
- PV $=$ Cash borrowed $=\$ 200$.
- CF $=$ Cash flow $=$ payment received after $n=5$ years $\$ 280.51$.

$$
\begin{aligned}
P V & =\frac{C F}{(1+i)^{n}} \quad \rightarrow \quad 200=\frac{280.51}{(1+i)^{5}} \\
(1+i)^{5}= & \frac{280.51}{200} \rightarrow 1+i=\left(\frac{280.51}{200}\right. \\
& \rightarrow i=1.07 \quad \rightarrow \quad i=7 \%
\end{aligned}
$$

- Yield to maturity: the annual interest rate that equates the present value of cash flow of payments received from a debt instrument with its current day value.
- Example: yield to maturity for a simple loan.
- PV $=$ Cash borrowed $=\$ 200$.
- CF $=$ Cash flow $=$ payment received after $n=5$ years $\$ 280.51$.

$$
\begin{aligned}
& P V=\frac{C F}{(1+i)^{n}} \quad \rightarrow \quad 200=\frac{280.51}{(1+i)^{5}} \\
&(1+i)^{5}=\frac{280.51}{200} \quad \rightarrow \quad 1+i=\left(\frac{280.51}{200}\right)^{\frac{1}{5}} \\
& 1+i=1.07 \quad \rightarrow \quad i=7 \%
\end{aligned}
$$

- Yield to maturity: the annual interest rate that equates the present value of cash flow of payments received from a debt instrument with its current day value.
- Example: yield to maturity for a simple loan.
- PV $=$ Cash borrowed $=\$ 200$.
- CF $=$ Cash flow $=$ payment received after $n=5$ years $\$ 280.51$.

$$
\begin{gathered}
P V=\frac{C F}{(1+i)^{n}} \quad \rightarrow \quad 200=\frac{280.51}{(1+i)^{5}} \\
(1+i)^{5}=\frac{280.51}{200} \quad \rightarrow \quad 1+i=\left(\frac{280.51}{200}\right)^{\frac{1}{5}} \\
1+i=1.07 \quad \rightarrow \quad i=7 \%
\end{gathered}
$$

Yield to Maturity: Coupon bond

- Present value of a coupon bond for,
- Coupon payment $=C F$.
- Face value $=F$.
- Years to maturity $=T$.

- To find yield to maturity, solve for i. Impossible to do algebraically \rightarrow use financial calculator.

Yield to Maturity: Coupon bond

- Present value of a coupon bond for,
- Coupon payment $=C F$.
- Face value $=F$.
- Years to maturity $=T$.

$$
P V=\frac{C F}{(1+i)}+\frac{C F}{(1+i)^{2}}+\ldots+\frac{C F}{(1+i)^{T}}+\frac{F}{(1+i)^{T}}
$$

- To find yield to maturity, solve for i. Impossible to do algebraically \rightarrow use financial calculator.

Yield to Maturity: Coupon bond

- Present value of a coupon bond for,
- Coupon payment $=C F$.
- Face value $=F$.
- Years to maturity $=T$.

$$
\begin{gathered}
P V=\frac{C F}{(1+i)}+\frac{C F}{(1+i)^{2}}+\ldots+\frac{C F}{(1+i)^{T}}+\frac{F}{(1+i)^{T}} \\
P V=\sum_{t=1}^{T} \frac{C F}{(1+i)^{t}}+\frac{F}{(1+i)^{T}}
\end{gathered}
$$

- To find yield to maturity, solve for i. Impossible to do algebraically \rightarrow use financial calculator.

Yield to Maturity: Coupon bond

- Present value of a coupon bond for,
- Coupon payment $=C F$.
- Face value $=F$.
- Years to maturity $=T$.

$$
\begin{gathered}
P V=\frac{C F}{(1+i)}+\frac{C F}{(1+i)^{2}}+\ldots+\frac{C F}{(1+i)^{T}}+\frac{F}{(1+i)^{T}} \\
P V=\sum_{t=1}^{T} \frac{C F}{(1+i)^{t}}+\frac{F}{(1+i)^{T}}
\end{gathered}
$$

- To find yield to maturity, solve for i. Impossible to do algebraically \rightarrow use financial calculator.

Rate of Return

- Rate of return: the total benefits received from holding a security, expressed as a percentage of purchase price.
- Rate of return includes interest payments plus capital gains. - Rate of return for holding a bond from time t to $t+1$ is,
- Can also express rate of return as the sum, $R=i+g$, where,

Rate of Return

- Rate of return: the total benefits received from holding a security, expressed as a percentage of purchase price.
- Rate of return includes interest payments plus capital gains.
- Rate of return for holding a bond from time t to $t+1$ is,
- Can also express rate of return as the sum, $R=i+g$, where,

Rate of Return

- Rate of return: the total benefits received from holding a security, expressed as a percentage of purchase price.
- Rate of return includes interest payments plus capital gains.
- Rate of return for holding a bond from time t to $t+1$ is,

Rate of Return

- Rate of return: the total benefits received from holding a security, expressed as a percentage of purchase price.
- Rate of return includes interest payments plus capital gains.
- Rate of return for holding a bond from time t to $t+1$ is,

$$
R=\frac{C F+P_{t+1}-P_{t}}{P_{t}}
$$

- R : rate of return.
- P_{t} : price of bond at time t .
- Can also express rate of return as the sum, $R=i+g$, where,

Rate of Return

- Rate of return: the total benefits received from holding a security, expressed as a percentage of purchase price.
- Rate of return includes interest payments plus capital gains.
- Rate of return for holding a bond from time t to $t+1$ is,

$$
R=\frac{C F+P_{t+1}-P_{t}}{P_{t}}
$$

- R : rate of return.
- P_{t} : price of bond at time t .
- Can also express rate of return as the sum, $R=i+g$, where,

Rate of Return

- Rate of return: the total benefits received from holding a security, expressed as a percentage of purchase price.
- Rate of return includes interest payments plus capital gains.
- Rate of return for holding a bond from time t to $t+1$ is,

$$
R=\frac{C F+P_{t+1}-P_{t}}{P_{t}}
$$

- R : rate of return.
- P_{t} : price of bond at time t .
- Can also express rate of return as the sum, $R=i+g$, where,

$$
\text { rate of capital gain }=g=\frac{P_{t+1}-P_{t}}{P_{t}}
$$

Rate of Return

- Rate of return: the total benefits received from holding a security, expressed as a percentage of purchase price.
- Rate of return includes interest payments plus capital gains.
- Rate of return for holding a bond from time t to $t+1$ is,

$$
R=\frac{C F+P_{t+1}-P_{t}}{P_{t}}
$$

- R : rate of return.
- P_{t} : price of bond at time t .
- Can also express rate of return as the sum, $R=i+g$, where,

$$
\begin{gathered}
\text { rate of capital gain }=g=\frac{P_{t+1}-P_{t}}{P_{t}}, \\
\text { interest rate }=i=\frac{C F}{P_{t}}
\end{gathered}
$$

Rate of Return

- Suppose a debt instrument is held for one year that is,
- purchased for $\$ 1,500$,
- makes a single interest payment of $\$ 100$,
- sold for $\$ 1,600$.
- What is the interest rate, rate of capital gain, rate of return?
- Suppose instead the sale price is $\$ 1,400$. What is the interest rate, rate of capital gain, rate of return?

Rate of Return

- Suppose a debt instrument is held for one year that is,
- purchased for $\$ 1,500$,
- makes a single interest payment of $\$ 100$,
- sold for $\$ 1,600$.
- What is the interest rate, rate of capital gain, rate of return?
- Suppose instead the sale price is $\$ 1,400$. What is the interest rate, rate of capital gain, rate of return?

Rate of Return

- Suppose a debt instrument is held for one year that is,
- purchased for $\$ 1,500$,
- makes a single interest payment of $\$ 100$,
- sold for $\$ 1,600$.
- What is the interest rate, rate of capital gain, rate of return?
- Suppose instead the sale price is $\$ 1,400$. What is the interest rate, rate of capital gain, rate of return?

Maturity, Volatility, and Return

- Long-term debt instruments have a high degree of interest rate risk.
- interest rate risk: changes in interest rates over the life of the debt instrument influence the secondary market price of the bond, influencing capital gains and therefore rate of return.
- Prices and returns for long-term bonds are more volatile than short-term bonds.
- Interest payments are therefore typically higher for long-term bonds.

Maturity, Volatility, and Return

- Long-term debt instruments have a high degree of interest rate risk.
- interest rate risk: changes in interest rates over the life of the debt instrument influence the secondary market price of the bond, influencing capital gains and therefore rate of return.
- Prices and returns for long-term bonds are more volatile than short-term bonds.
- Interest payments are therefore typically higher for long-term bonds.

Maturity, Volatility, and Return

- Long-term debt instruments have a high degree of interest rate risk.
- interest rate risk: changes in interest rates over the life of the debt instrument influence the secondary market price of the bond, influencing capital gains and therefore rate of return.
- Prices and returns for long-term bonds are more volatile than short-term bonds.
- Interest payments are therefore typically higher for long-term bonds.

Maturity, Volatility, and Return

- Long-term debt instruments have a high degree of interest rate risk.
- interest rate risk: changes in interest rates over the life of the debt instrument influence the secondary market price of the bond, influencing capital gains and therefore rate of return.
- Prices and returns for long-term bonds are more volatile than short-term bonds.
- Interest payments are therefore typically higher for long-term bonds.

Auto Loans

Auto Loan

- Suppose you borrow $\$ 15,000$ to purchase a car.
- Six years of monthly payments at 4% APR
- What is the monthly payment on the loan?

No Payments for First Three Months!

- Suppose you borrow $\$ 15,000$ to purchase a car.
- Six years of monthly payments at 4% APR
- No payments for first three months!
- What is the monthly payment on the loan?

Coupon Bonds on the Secondary Market

- Suppose there is a coupon bond on the secondary market with face value of $\$ 1,000$, makes two payments per year, has annual coupon rate of 3.5%, and has 6 years until maturity.
- Suppose the current interest rate is 4%. Compute the semi-annual interest rate and the present value of the bond.
- Suppose you purchase the bond at a price equal to the present value. Suppose you hold it for 1.5 years and then sell it again on the secondary market. Suppose in 1.5 years, the interest rate is 3%. What will the present value of the bond be at that sell date?

Reading and Exercises

- Present values and future values: Chapter 3, pp. 55-63
- Debt instruments: Chapter 3, pp. 63-67
- Yield to maturity: Chapter 3, pp. 68-78
- Rates of return: Chapter 3, pp. 79-83
- Canvas quiz due Wed 11:59 PM.
- Homework/Exercise due Fri 11:59 PM. We will work together in class on Thursday

