Consumption and Savings Model

ECO 305: Intermediate Macroeconomics

・ロト ・回ト ・ヨト ・ヨト

Goals Reading and Exercises

- Describe how consumers make consumption and savings decisions, considering their well being *in the future*
- Describe how consumer decisions for savings, current consumption, future consumption are affected by,
 - changes in the interest rate
 - temporary changes in current income
 - changes in future income
 - changes in permanent income
- Predict how borrowers versus savers are affected by changes in interest rates

Predict how government expenditure and tax policies affect consumer decisions

Goals Reading and Exercises

Reading and Exercises

- Williamson, Chapter 9, pp. 306-321: Consumption and savings decisions
- Williamson, Chapter 9, pp. 321-324: Effects on decisions from changes in income
- Williamson, Chapter 9, pp. 327-332: Effects on decisions from changes in interest rates for savers and borrowers
- Williamson, Chapter 9, pp. 337-343: Ricardian Equivalence
- Canvas Quiz due Wed 11:59 PM. Multiple-choice, 15 questions, unlimited attempts allowed, only best score counts
- Homework/In-class Exercise due Fri 11:59 PM. We will work together in class on Thursday

Goals Reading and Exercises

Reading and Exercises

- Williamson, Chapter 9, pp. 306-321: Consumption and savings decisions
- Williamson, Chapter 9, pp. 321-324: Effects on decisions from changes in income
- Williamson, Chapter 9, pp. 327-332: Effects on decisions from changes in interest rates for savers and borrowers
- Williamson, Chapter 9, pp. 337-343: Ricardian Equivalence
- Canvas Quiz due Wed 11:59 PM. Multiple-choice, 15 questions, unlimited attempts allowed, only best score counts
- Homework/In-class Exercise due Fri 11:59 PM. We will work together in class on Thursday

Goals Reading and Exercises

Reading and Exercises

- Williamson, Chapter 9, pp. 306-321: Consumption and savings decisions
- Williamson, Chapter 9, pp. 321-324: Effects on decisions from changes in income
- Williamson, Chapter 9, pp. 327-332: Effects on decisions from changes in interest rates for savers and borrowers
- Williamson, Chapter 9, pp. 337-343: Ricardian Equivalence
- Canvas Quiz due Wed 11:59 PM. Multiple-choice, 15 questions, unlimited attempts allowed, only best score counts
- Homework/In-class Exercise due Fri 11:59 PM. We will work together in class on Thursday

Goals Reading and Exercises

Reading and Exercises

- Williamson, Chapter 9, pp. 306-321: Consumption and savings decisions
- Williamson, Chapter 9, pp. 321-324: Effects on decisions from changes in income
- Williamson, Chapter 9, pp. 327-332: Effects on decisions from changes in interest rates for savers and borrowers
- Williamson, Chapter 9, pp. 337-343: Ricardian Equivalence
- Canvas Quiz due Wed 11:59 PM. Multiple-choice, 15 questions, unlimited attempts allowed, only best score counts
- Homework/In-class Exercise due Fri 11:59 PM. We will work together in class on Thursday

Goals Reading and Exercises

Reading and Exercises

- Williamson, Chapter 9, pp. 306-321: Consumption and savings decisions
- Williamson, Chapter 9, pp. 321-324: Effects on decisions from changes in income
- Williamson, Chapter 9, pp. 327-332: Effects on decisions from changes in interest rates for savers and borrowers
- Williamson, Chapter 9, pp. 337-343: Ricardian Equivalence
- Canvas Quiz due Wed 11:59 PM. Multiple-choice, 15 questions, unlimited attempts allowed, only best score counts
- Homework/In-class Exercise due Fri 11:59 PM. We will work together in class on Thursday

Goals Reading and Exercises

Reading and Exercises

- Williamson, Chapter 9, pp. 306-321: Consumption and savings decisions
- Williamson, Chapter 9, pp. 321-324: Effects on decisions from changes in income
- Williamson, Chapter 9, pp. 327-332: Effects on decisions from changes in interest rates for savers and borrowers
- Williamson, Chapter 9, pp. 337-343: Ricardian Equivalence
- Canvas Quiz due Wed 11:59 PM. Multiple-choice, 15 questions, unlimited attempts allowed, only best score counts
- Homework/In-class Exercise due Fri 11:59 PM. We will work together in class on Thursday

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

・ロト ・回ト ・ヨト ・ヨト

3/17

- Two variables over two periods: current consumption and future consumption
- Consumers maximize utility, derived from current and future consumption, subject to budget constraints
- Endowment economy: Consumers have everything given to them y t today, y' t' in the future
- Consumers can save or borrow in the current period (negative outcome for saving)
- Consumers either consume saved money in future period, or pay back borrowed money in future period

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

・ロト ・回ト ・ヨト ・ヨト

3/17

- Two variables over two periods: current consumption and future consumption
- Consumers maximize utility, derived from current and future consumption, subject to budget constraints
- Endowment economy: Consumers have everything given to them y t today, y' t' in the future
- Consumers can save or borrow in the current period (negative outcome for saving)
- Consumers either consume saved money in future period, or pay back borrowed money in future period

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

・ロト ・回ト ・ヨト ・ヨト

3/17

- Two variables over two periods: current consumption and future consumption
- Consumers maximize utility, derived from current and future consumption, subject to budget constraints
- Endowment economy: Consumers have everything given to them y t today, y' t' in the future
- Consumers can save or borrow in the current period (negative outcome for saving)
- Consumers either consume saved money in future period, or pay back borrowed money in future period

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

3/17

- Two variables over two periods: current consumption and future consumption
- Consumers maximize utility, derived from current and future consumption, subject to budget constraints
- Endowment economy: Consumers have everything given to them y t today, y' t' in the future
- Consumers can save or borrow in the current period (negative outcome for saving)
- Consumers either consume saved money in future period, or pay back borrowed money in future period

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

・ロト ・回ト ・ヨト ・ヨト

3/17

- Two variables over two periods: current consumption and future consumption
- Consumers maximize utility, derived from current and future consumption, subject to budget constraints
- Endowment economy: Consumers have everything given to them y t today, y' t' in the future
- Consumers can save or borrow in the current period (negative outcome for saving)
- Consumers either consume saved money in future period, or pay back borrowed money in future period

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

Intertemporal Budget Constraint

4/17

Budget Constraints

- Current period:
 - c + s = y t
- Future period:
 - c' = y' t' + (1 + r)s
- r: real interest rate
- Combining:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t'}{1+r}$$

Graphical Budget Constraint

・ロト ・日ト ・ヨト ・ヨト

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

Intertemporal Budget Constraint

4/17

Budget Constraints

- Current period:
 - c + s = y t
- Future period:
 - c' = y' t' + (1 + r)s
- r: real interest rate
- Combining:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t'}{1+r}$$

Graphical Budget Constraint

イロン イヨン イヨン

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

Intertemporal Budget Constraint

4/17

Budget Constraints

- Current period:
 - c + s = y t
- Future period:
 - c' = y' t' + (1 + r)s
- r: real interest rate
- Combining:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t'}{1+r}$$

Graphical Budget Constraint

・ロト ・日ト ・ヨト ・ヨト

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

Intertemporal Budget Constraint

4/17

Budget Constraints

- Current period:
 - c + s = y t
- Future period:
 - c' = y' t' + (1 + r)s
- r: real interest rate
- Combining:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t'}{1+r}$$

Graphical Budget Constraint

イロン イヨン イヨン イヨン

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

Intertemporal Budget Constraint

4/17

Budget Constraints

- Current period:
 - c + s = y t
- Future period:

$$c' = y' - t' + (1 + r)s$$

- r: real interest rate
- Combining:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t'}{1+r}$$

Graphical Budget Constraint

イロト イヨト イヨト イヨト

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

Utility Maximization

- Choice variables: current and future consumption
- Given variables: endowments y and y', taxes t and t', interest rate, r
- Maximize utility: reach highest utility curve possible
- Maximize utility where indifference curve is just tangent to budget constraint

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

Utility Maximization

- Choice variables: current and future consumption
- Given variables: endowments y and y', taxes t and t', interest rate, r
- Maximize utility: reach highest utility curve possible
- Maximize utility where indifference curve is just tangent to budget constraint

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

Utility Maximization

- Choice variables: current and future consumption
- Given variables: endowments y and y', taxes t and t', interest rate, r
- Maximize utility: reach highest utility curve possible
- Maximize utility where indifference curve is just tangent to budget constraint

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

Utility Maximization

Consumer Decision

- Choice variables: current and future consumption
- Given variables: endowments y and y', taxes t and t', interest rate, r
- Maximize utility: reach highest utility curve possible
- Maximize utility where indifference curve is just tangent to budget constraint

ヘロマ 人間マ 人間マ 人間マ

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

Utility Maximization

- Choice variables: current and future consumption
- Given variables:
 endowments y and y', taxes t and t', interest rate, r
- Maximize utility: reach highest utility curve possible
- Maximize utility where indifference curve is just tangent to budget constraint

Representative Consumer Intertemporal Budget Constraint Utility Maximization Savers Versus Borrowers

Savers Versus Borrwers

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Temporary Increase in Income

7/17

Temporary Increase in Income

- Suppose income increases in the current period (↑ y), but expected to be temporary (i.e. no change in y')
- Budget shifts outward, horizontal distance equal to the change in y
- Consumption smoothing: Both *c* and *c'* increase
- Savings increases: $\Delta c < \Delta y$

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Temporary Increase in Income

7/17

Temporary Increase in Income

- Suppose income increases in the current period (↑ y), but expected to be temporary (i.e. no change in y')
- Budget shifts outward, horizontal distance equal to the change in y
- Consumption smoothing: Both *c* and *c'* increase
- Savings increases: $\Delta c < \Delta y$

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Temporary Increase in Income

Temporary Increase in Income

- Suppose income increases in the current period (↑ y), but expected to be temporary (i.e. no change in y')
- Budget shifts outward, horizontal distance equal to the change in y
- Consumption smoothing: Both *c* and *c'* increase

• Savings increases: $\Delta c < \Delta y$

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Temporary Increase in Income

Temporary Increase in Income

- Suppose income increases in the current period (↑ y), but expected to be temporary (i.e. no change in y')
- Budget shifts outward, horizontal distance equal to the change in y
- Consumption smoothing: Both *c* and *c'* increase

• Savings increases: $\Delta c < \Delta y$

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Temporary Increase in Income

Temporary Increase in Income

- Suppose income increases in the current period (↑ y), but expected to be temporary (i.e. no change in y')
- Budget shifts outward, horizontal distance equal to the change in *y*
- Consumption smoothing: Both *c* and *c'* increase
- Savings increases: $\Delta c < \Delta y$

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Increase in Expected Future Income

Increase Expected Future Income

- Suppose income increases in the future period (↑ y'), but no change in the current period (i.e. no change in y)
- Budget shifts outward, vertical distance equal to the change in y'
- Consumption smoothing: Both *c* and *c'* increase
- Savings decreases:
 s = y − t − c, c ↑, but no change in y

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Increase in Expected Future Income

Increase Expected Future Income

- Suppose income increases in the future period (↑ y'), but no change in the current period (i.e. no change in y)
- Budget shifts outward, vertical distance equal to the change in y'
- Consumption smoothing: Both *c* and *c'* increase
- Savings decreases:
 s = y − t − c, c ↑, but no change in y

Graphical Utility Maximization

ECO 305: Intermediate Macroeconomics

Consumption and Savings Model

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Increase in Expected Future Income

Increase Expected Future Income

- Suppose income increases in the future period (↑ y'), but no change in the current period (i.e. no change in y)
- Budget shifts outward, vertical distance equal to the change in y'
- Consumption smoothing: Both *c* and *c'* increase
- Savings decreases:
 s = y − t − c, c ↑, but no change in y

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Increase in Expected Future Income

Increase Expected Future Income

- Suppose income increases in the future period (↑ y'), but no change in the current period (i.e. no change in y)
- Budget shifts outward, vertical distance equal to the change in y'
- Consumption smoothing: Both c and c' increase
- Savings decreases:
 s = y − t − c, c ↑, but no change in y

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Increase in Expected Future Income

Increase Expected Future Income

- Suppose income increases in the future period (↑ y'), but no change in the current period (i.e. no change in y)
- Budget shifts outward, vertical distance equal to the change in y'
- Consumption smoothing: Both c and c' increase
- Savings decreases: $s = y - t - c, c \uparrow$, but no

change in y

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Permanent Increase in Income

Permanent Increase in Income

- Suppose income increases in the current and future period by the same amount $(\Delta y = \Delta y')$
- Budget shifts outward, twice.
- Horizontal distance $= \Delta y$, vertical distance $= \Delta y'$
- No consumption smoothing: Both c and c' increase by full $\Delta y = \Delta y'$
- No change in savings: All increase in income goes to consumption

・ロト ・回ト ・ヨト ・ヨト

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Permanent Increase in Income

Permanent Increase in Income

- Suppose income increases in the current and future period by the same amount $(\Delta y = \Delta y')$
- Budget shifts outward, twice.
- Horizontal distance $= \Delta y$, vertical distance $= \Delta y'$
- No consumption smoothing: Both c and c' increase by full $\Delta y = \Delta y'$
- No change in savings: All increase in income goes to consumption

Graphical Utility Maximization

・ロト ・回ト ・ヨト ・ヨト
Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Permanent Increase in Income

Permanent Increase in Income

- Suppose income increases in the current and future period by the same amount $(\Delta y = \Delta y')$
- Budget shifts outward, twice.
- Horizontal distance $= \Delta y$, vertical distance $= \Delta y'$
- No consumption smoothing: Both c and c' increase by full $\Delta y = \Delta y'$
- No change in savings: All increase in income goes to consumption

Graphical Utility Maximization

・ロト ・回ト ・ヨト ・ヨト

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Permanent Increase in Income

Permanent Increase in Income

- Suppose income increases in the current and future period by the same amount $(\Delta y = \Delta y')$
- Budget shifts outward, twice.
- Horizontal distance $= \Delta y$, vertical distance $= \Delta y'$
- No consumption smoothing: Both c and c' increase by full $\Delta y = \Delta y'$
- No change in savings: All increase in income goes to consumption

Graphical Utility Maximization

・ロト ・回ト ・ヨト ・ヨト

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Permanent Increase in Income

Permanent Increase in Income

- Suppose income increases in the current and future period by the same amount $(\Delta y = \Delta y')$
- Budget shifts outward, twice.
- Horizontal distance $= \Delta y$, vertical distance $= \Delta y'$
- No consumption smoothing: Both c and c' increase by full $\Delta y = \Delta y'$
- No change in savings: All increase in income goes to consumption

Graphical Utility Maximization

・ロト ・回ト ・ヨト ・ヨト

Temporary Changes in Income Expected Future Changes in Income Permanent Change in Income

Permanent Increase in Income

Permanent Increase in Income

- Suppose income increases in the current and future period by the same amount $(\Delta y = \Delta y')$
- Budget shifts outward, twice.
- Horizontal distance $= \Delta y$, vertical distance $= \Delta y'$
- No consumption smoothing: Both c and c' increase by full $\Delta y = \Delta y'$
- No change in savings: All increase in income goes to consumption

Graphical Utility Maximization

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Borrowers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect: Current consumption more expensive, ↓ c, ↑ c'
- Negative income effect for borrowers: ↓ c, ↓ c'
- Current consumption decreases
- Indeterminate impact on future consumption
- Saving increases (i.e. borrowing decreases)

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Borrowers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect: Current consumption more expensive, ↓ c, ↑ c'
- Negative income effect for borrowers: ↓ c, ↓ c'
- Current consumption decreases
- Indeterminate impact on future consumption
- Saving increases (i.e. borrowing decreases)

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Borrowers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect: Current consumption more expensive, ↓ c, ↑ c'
- Negative income effect for borrowers: ↓ c, ↓ c'
- Current consumption decreases
- Indeterminate impact on future consumption
- Saving increases (i.e. borrowing decreases)

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Borrowers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect: Current consumption more expensive, ↓ c, ↑ c'
- Negative income effect for borrowers: ↓ c, ↓ c'
- Current consumption decreases
- Indeterminate impact on future consumption
- Saving increases (i.e. borrowing decreases)

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Borrowers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect: Current consumption more expensive, ↓ c, ↑ c'
- Negative income effect for borrowers: ↓ c, ↓ c'
- Current consumption decreases
- Indeterminate impact on future consumption
- Saving increases (i.e. borrowing decreases)

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Borrowers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect: Current consumption more expensive, ↓ c, ↑ c'
- Negative income effect for borrowers: ↓ c, ↓ c'
- Current consumption decreases
- Indeterminate impact on future consumption
- Saving increases (i.e. borrowing decreases)

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Borrowers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect: Current consumption more expensive, ↓ c, ↑ c'
- Negative income effect for borrowers: ↓ c, ↓ c'
- Current consumption decreases
- Indeterminate impact on future consumption
- Saving increases (i.e. borrowing decreases)

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Savers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect same: Current consumption more expensive, $\downarrow c$, $\uparrow c'$
- *Positive* income effect for borrowers: ↑ c, ↑ c'
- Indeterminate impact on current consumption
- Future consumption increases
- Saving is indeterminate

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Savers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect same: Current consumption more expensive, ↓ c, ↑ c'
- Positive income effect for borrowers: ↑ c, ↑ c'
- Indeterminate impact on current consumption
- Future consumption increases
- Saving is indeterminate

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Savers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect same: Current consumption more expensive, $\downarrow c$, $\uparrow c'$
- Positive income effect for borrowers: ↑ c, ↑ c'
- Indeterminate impact on current consumption
- Future consumption increases
- Saving is indeterminate

イロト イヨト イヨト イヨト

ECO 305: Intermediate Macroeconomics Consumption and Savings Model

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Savers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect same: Current consumption more expensive, $\downarrow c$, $\uparrow c'$
- Positive income effect for borrowers: ↑ c, ↑ c'
- Indeterminate impact on current consumption
- Future consumption increases
- Saving is indeterminate

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Savers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect same: Current consumption more expensive, $\downarrow c$, $\uparrow c'$
- Positive income effect for borrowers: ↑ c, ↑ c'
- Indeterminate impact on current consumption
- Future consumption increases
- Saving is indeterminate

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Savers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect same: Current consumption more expensive, $\downarrow c$, $\uparrow c'$
- Positive income effect for borrowers: ↑ c, ↑ c'
- Indeterminate impact on current consumption
- Future consumption increases
- Saving is indeterminate

Increase in Interest Rate on Borrowers Increase in Interest Rate on Savers

Increase in Interest Rate on Savers

Increase in Interest Rate

- Causes a pivot in the budget constraint at the endowment point
- Substitution effect same: Current consumption more expensive, $\downarrow c$, $\uparrow c'$
- Positive income effect for borrowers: ↑ c, ↑ c'
- Indeterminate impact on current consumption
- Future consumption increases
- Saving is indeterminate

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Government Budget Constraint

Budget Constraints

- Current period:
 - g = t + b
- Future period:
 - g' + (1+r)b = t'
- b: government borrowing
- Combining:

$$g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$$

Implications

- Cannot change *only one fiscal variable, g, g', t, t'*
- Recall consumer budget:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t'}{1+r}$$

$$c + \frac{c'}{1+r} = y + \frac{y'}{1+r}$$
$$- \left(t + \frac{t'}{1+r}\right)$$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Government Budget Constraint

Budget Constraints

- Current period:
 - g = t + b
- Future period:
 - g' + (1+r)b = t'
- b: government borrowing
- Combining:

$$g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$$

Implications

- Cannot change *only one fiscal variable, g, g', t, t'*
- Recall consumer budget:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t'}{1+r}$$

$$c + \frac{c'}{1+r} = y + \frac{y'}{1+r}$$
$$- \left(t + \frac{t'}{1+r}\right)$$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Government Budget Constraint

Budget Constraints

- Current period:
 - g = t + b
- Future period:
 - g' + (1+r)b = t'
- b: government borrowing
- Combining:

$$g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$$

Implications

- Cannot change *only one fiscal variable, g, g', t, t'*
- Recall consumer budget:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t'}{1+r}$$

$$c + \frac{c'}{1+r} = y + \frac{y'}{1+r}$$
$$- \left(t + \frac{t'}{1+r}\right)$$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Government Budget Constraint

Budget Constraints

- Current period:
 - g = t + b
- Future period:
 - g' + (1+r)b = t'
- b: government borrowing
- Combining:

$$g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$$

Implications

- Cannot change *only one fiscal variable, g, g', t, t'*
- Recall consumer budget:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t'}{1+r}$$

$$c + \frac{c'}{1+r} = y + \frac{y'}{1+r}$$
$$- \left(t + \frac{t'}{1+r}\right)$$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Government Budget Constraint

Budget Constraints

- Current period:
 - g = t + b
- Future period:
 - g' + (1+r)b = t'
- *b*: government borrowing
- Combining:

$$g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$$

Implications

- Cannot change *only one fiscal variable, g, g', t, t'*
- Recall consumer budget:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t'}{1+r}$$

$$c + \frac{c'}{1+r} = y + \frac{y'}{1+r}$$
$$-\left(t + \frac{t'}{1+r}\right)$$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Government Budget Constraint

Budget Constraints

- Current period:
 - g = t + b
- Future period:
 - g' + (1+r)b = t'
- b: government borrowing
- Combining:

$$g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$$

Implications

- Cannot change *only one* fiscal variable, g, g', t, t'
- Recall consumer budget:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t'}{1+r}$$

$$c + \frac{c'}{1+r} = y + \frac{y'}{1+r} - \left(t + \frac{t'}{1+r}\right)$$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Government Budget Constraint

Budget Constraints

- Current period:
 - g = t + b
- Future period:
 - g' + (1+r)b = t'
- b: government borrowing
- Combining:

$$g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$$

Implications

- Cannot change *only one* fiscal variable, g, g', t, t'
- Recall consumer budget:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t}{1+r}$$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Government Budget Constraint

Budget Constraints

- Current period:
 - g = t + b
- Future period:
 - g' + (1+r)b = t'
- b: government borrowing
- Combining:

$$g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$$

Implications

- Cannot change *only one* fiscal variable, g, g', t, t'
- Recall consumer budget:

$$c + \frac{c'}{1+r} = y - t + \frac{y' - t'}{1+r}$$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Government Budget Constraint

Budget Constraints

- Current period:
 - g = t + b
- Future period:
 - g' + (1+r)b = t'
- b: government borrowing
- Combining:

$$g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$$

Implications

- Cannot change *only one* fiscal variable, g, g', t, t'
- Recall consumer budget:

$$c + rac{c'}{1+r} = y - t + rac{y' - t'}{1+r}$$

$$c + \frac{c'}{1+r} = y + \frac{y'}{1+r} - \left(t + \frac{t'}{1+r}\right)$$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Increase in Current Government Expenditures

13/ 17

Scenario

- Suppose government increases spending, with no change in taxes
- Without a credible announcement on change in future spending, people may assume financed with increase in future taxes
- Budget shifts inward, horizontal distance = Δg
- Consumption smoothing: Both *c* and *c'* decrease
- Increase in real GDP, since $\Delta g > -\Delta c$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Increase in Current Government Expenditures

13/ 17

Scenario

- Suppose government increases spending, with no change in taxes
- Without a credible announcement on change in future spending, people may assume financed with increase in future taxes
- Budget shifts inward, horizontal distance = Δg
- Consumption smoothing: Both *c* and *c'* decrease
- Increase in real GDP, since $\Delta g > -\Delta c$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Increase in Current Government Expenditures

13/ 17

Scenario

- Suppose government increases spending, with no change in taxes
- Without a credible announcement on change in future spending, people may assume financed with increase in future taxes
- Budget shifts inward, horizontal distance = Δg
- Consumption smoothing: Both *c* and *c'* decrease
- Increase in real GDP, since $\Delta g > -\Delta c$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Increase in Current Government Expenditures

13/ 17

Scenario

- Suppose government increases spending, with no change in taxes
- Without a credible announcement on change in future spending, people may assume financed with increase in future taxes
- Budget shifts inward, horizontal distance = Δg
- Consumption smoothing: Both *c* and *c'* decrease
- Increase in real GDP, since $\Delta g > -\Delta c$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Increase in Current Government Expenditures

13/ 17

Scenario

- Suppose government increases spending, with no change in taxes
- Without a credible announcement on change in future spending, people may assume financed with increase in future taxes
- Budget shifts inward, horizontal distance = Δg
- Consumption smoothing: Both c and c' decrease
- Increase in real GDP, since $\Delta g > -\Delta c$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Increase in Current Government Expenditures

13/ 17

Scenario

- Suppose government increases spending, with no change in taxes
- Without a credible announcement on change in future spending, people may assume financed with increase in future taxes
- Budget shifts inward, horizontal distance = Δg
- Consumption smoothing: Both *c* and *c'* decrease
- Increase in real GDP, since $\Delta g > -\Delta c$

Government Burdget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Permanent Increase in Government Expenditures

14/17

Scenario

- Suppose government increases spending now and in the future
- Net present value of taxes increases by same amount
- Budget shifts inward, horizontal distance = Δg , vertical distance = $\Delta g'$
- No consumption smoothing: Both c and c' decrease by amounts = Δg
- No change in real GDP, since $\Delta g = -\Delta c$

ECO 305: Intermediate Macroeconomics

Consumption and Savings Model

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Permanent Increase in Government Expenditures

14/17

Scenario

- Suppose government increases spending now and in the future
- Net present value of taxes increases by same amount
- Budget shifts inward, horizontal distance = Δg , vertical distance = $\Delta g'$
- No consumption smoothing: Both c and c' decrease by amounts = Δg
- No change in real GDP, since $\Delta g = -\Delta c$

ECO 305: Intermediate Macroeconomics

Consumption and Savings Model

Government Burdget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Permanent Increase in Government Expenditures

14/17

Scenario

- Suppose government increases spending now and in the future
- Net present value of taxes increases by same amount
- Budget shifts inward, horizontal distance = Δg , vertical distance = $\Delta g'$
- No consumption smoothing: Both c and c' decrease by amounts = Δg
- No change in real GDP, since $\Delta g = -\Delta c$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Permanent Increase in Government Expenditures

14/17

Scenario

- Suppose government increases spending now and in the future
- Net present value of taxes increases by same amount
- Budget shifts inward, horizontal distance = Δg , vertical distance = $\Delta g'$
- No consumption smoothing: Both c and c' decrease by amounts $= \Delta g$
- No change in real GDP, since $\Delta g = -\Delta c$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Permanent Increase in Government Expenditures

14/17

Scenario

- Suppose government increases spending now and in the future
- Net present value of taxes increases by same amount
- Budget shifts inward, horizontal distance = Δg , vertical distance = $\Delta g'$
- No consumption smoothing: Both c and c' decrease by amounts = Δg
- No change in real GDP, since $\Delta g = -\Delta c$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Permanent Increase in Government Expenditures

14/17

Scenario

- Suppose government increases spending now and in the future
- Net present value of taxes increases by same amount
- Budget shifts inward, horizontal distance = Δg , vertical distance = $\Delta g'$
- No consumption smoothing: Both c and c' decrease by amounts = Δg
- No change in real GDP, since $\Delta g = -\Delta c$

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Suppose the government gives a tax rebate
- But with no change in current or planned government spending
- Gov't budget: $g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$
- If there is no change in right-side of equation, no change in left-side
- No change in net present-value of taxes, $t + \frac{t'}{1+r}$, implies no change in consumer budget constraint, no change in c or c'
- Current period: c + s = y t. With tax cut, no change in c, consumer saves all of the tax cut
- Future period: c' = y' t' + s, holds s to pay taxes in future

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Suppose the government gives a tax rebate
- But with no change in current or planned government spending
- Gov't budget: $g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$
- If there is no change in right-side of equation, no change in left-side
- No change in net present-value of taxes, $t + \frac{t'}{1+r}$, implies no change in consumer budget constraint, no change in c or c'
- Current period: c + s = y t. With tax cut, no change in c, consumer saves all of the tax cut
- Future period: c' = y' t' + s, holds s to pay taxes in future

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Suppose the government gives a tax rebate
- But with no change in current or planned government spending
- Gov't budget: $g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$
- If there is no change in right-side of equation, no change in left-side
- No change in net present-value of taxes, $t + \frac{t'}{1+r}$, implies no change in consumer budget constraint, no change in c or c'
- Current period: c + s = y t. With tax cut, no change in c, consumer saves all of the tax cut
- Future period: c' = y' t' + s, holds s to pay taxes in future

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Suppose the government gives a tax rebate
- But with no change in current or planned government spending
- Gov't budget: $g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$
- If there is no change in right-side of equation, no change in left-side
- No change in net present-value of taxes, $t + \frac{t'}{1+r}$, implies no change in consumer budget constraint, no change in c or c'
- Current period: c + s = y t. With tax cut, no change in c, consumer saves all of the tax cut
- Future period: c' = y' t' + s, holds s to pay taxes in future

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Suppose the government gives a tax rebate
- But with no change in current or planned government spending
- Gov't budget: $g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$
- If there is no change in right-side of equation, no change in left-side
- No change in net present-value of taxes, $t + \frac{t'}{1+r}$, implies no change in consumer budget constraint, no change in c or c'
- Current period: c + s = y t. With tax cut, no change in c, consumer saves all of the tax cut
- Future period: c' = y' t' + s, holds s to pay taxes in future

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

・ロト ・回ト ・ヨト ・ヨト ・ヨ

- Suppose the government gives a tax rebate
- But with no change in current or planned government spending
- Gov't budget: $g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$
- If there is no change in right-side of equation, no change in left-side
- No change in net present-value of taxes, $t + \frac{t'}{1+r}$, implies no change in consumer budget constraint, no change in c or c'
- Current period: c + s = y t. With tax cut, no change in c, consumer saves all of the tax cut
- Future period: c' = y' t' + s, holds s to pay taxes in future

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Suppose the government gives a tax rebate
- But with no change in current or planned government spending
- Gov't budget: $g + \frac{g'}{1+r} = t + \frac{t'}{1+r}$
- If there is no change in right-side of equation, no change in left-side
- No change in net present-value of taxes, $t + \frac{t'}{1+r}$, implies no change in consumer budget constraint, no change in c or c'
- Current period: c + s = y t. With tax cut, no change in c, consumer saves all of the tax cut
- Future period: c' = y' t' + s, holds s to pay taxes in future

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Ricardian Equivalence Assumptions

- Assumes government and consumer had same r
 - In reality, governments often enjoy lower interest rate on debt
- Assumes the *same* consumer pays higher taxes in the future.
 - In reality, complicated tax policies may direct future taxes to different subpopulations
- Assumes the consumer lives long enough under the same tax bracket to pay future taxes
 - Future increase in taxes may be decades away
- Not explicitly modeled: Assumes conditions for socially optimal equilibrium
 - Slowly adjusting wages and prices, distorting tax policies, can create different predictions
- Why is this useful? Still explains realistic limitations of government policy, and how to address it. Define fiscal policies in terms of current taxes / government expenditures and futur@ tax=plans.

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Ricardian Equivalence Assumptions

- Assumes government and consumer had same r
 - In reality, governments often enjoy lower interest rate on debt
- Assumes the same consumer pays higher taxes in the future.
 - In reality, complicated tax policies may direct future taxes to different subpopulations
- Assumes the consumer lives long enough under the same tax bracket to pay future taxes
 - Future increase in taxes may be decades away
- Not explicitly modeled: Assumes conditions for socially optimal equilibrium
 - Slowly adjusting wages and prices, distorting tax policies, can create different predictions
- Why is this useful? Still explains realistic limitations of government policy, and how to address it. Define fiscal policies in terms of current taxes / government expenditures and future tax=plans.

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Ricardian Equivalence Assumptions

 $16/\ 17$

- Assumes government and consumer had same r
 - In reality, governments often enjoy lower interest rate on debt
- Assumes the same consumer pays higher taxes in the future.
 - In reality, complicated tax policies may direct future taxes to different subpopulations
- Assumes the consumer lives long enough under the same tax bracket to pay future taxes
 - Future increase in taxes may be decades away
- Not explicitly modeled: Assumes conditions for socially optimal equilibrium
 - Slowly adjusting wages and prices, distorting tax policies, can create different predictions
- Why is this useful? Still explains realistic limitations of government policy, and how to address it. Define fiscal policies in terms of current taxes / government expenditures and future tax=plans.

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Ricardian Equivalence Assumptions

- Assumes government and consumer had same r
 - In reality, governments often enjoy lower interest rate on debt
- Assumes the same consumer pays higher taxes in the future.
 - In reality, complicated tax policies may direct future taxes to different subpopulations
- Assumes the consumer lives long enough under the same tax bracket to pay future taxes
 - Future increase in taxes may be decades away
- Not explicitly modeled: Assumes conditions for socially optimal equilibrium
 - Slowly adjusting wages and prices, distorting tax policies, can create different predictions
- Why is this useful? Still explains realistic limitations of government policy, and how to address it. Define fiscal policies in terms of current taxes / government expenditures and future tax=plans.

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Ricardian Equivalence Assumptions

- Assumes government and consumer had same r
 - In reality, governments often enjoy lower interest rate on debt
- Assumes the *same* consumer pays higher taxes in the future.
 - In reality, complicated tax policies may direct future taxes to different subpopulations
- Assumes the consumer lives long enough under the same tax bracket to pay future taxes
 - Future increase in taxes may be decades away
- Not explicitly modeled: Assumes conditions for socially optimal equilibrium
 - Slowly adjusting wages and prices, distorting tax policies, can create different predictions
- Why is this useful? Still explains realistic limitations of government policy, and how to address it. Define fiscal policies in terms of current taxes / government expenditures and future taxiplans.

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Ricardian Equivalence Assumptions

- Assumes government and consumer had same r
 - In reality, governments often enjoy lower interest rate on debt
- Assumes the *same* consumer pays higher taxes in the future.
 - In reality, complicated tax policies may direct future taxes to different subpopulations
- Assumes the consumer lives long enough under the same tax bracket to pay future taxes
 - Future increase in taxes may be decades away
- Not explicitly modeled: Assumes conditions for socially optimal equilibrium
 - Slowly adjusting wages and prices, distorting tax policies, can create different predictions
- Why is this useful? Still explains realistic limitations of government policy, and how to address it. Define fiscal policies in terms of current taxes / government expenditures and futur@ tax=plans.

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Ricardian Equivalence Assumptions

 $16/\ 17$

- Assumes government and consumer had same r
 - In reality, governments often enjoy lower interest rate on debt
- Assumes the *same* consumer pays higher taxes in the future.
 - In reality, complicated tax policies may direct future taxes to different subpopulations
- Assumes the consumer lives long enough under the same tax bracket to pay future taxes
 - Future increase in taxes may be decades away
- Not explicitly modeled: Assumes conditions for socially optimal equilibrium
 - Slowly adjusting wages and prices, distorting tax policies, can create different predictions
- Why is this useful? Still explains realistic limitations of government policy, and how to address it. Define fiscal policies in terms of current taxes / government expenditures and future tax plans.

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Ricardian Equivalence Assumptions

- Assumes government and consumer had same r
 - In reality, governments often enjoy lower interest rate on debt
- Assumes the *same* consumer pays higher taxes in the future.
 - In reality, complicated tax policies may direct future taxes to different subpopulations
- Assumes the consumer lives long enough under the same tax bracket to pay future taxes
 - Future increase in taxes may be decades away
- Not explicitly modeled: Assumes conditions for socially optimal equilibrium
 - Slowly adjusting wages and prices, distorting tax policies, can create different predictions
- Why is this useful? Still explains realistic limitations of government policy, and how to address it. Define fiscal policies in terms of current taxes / government expenditures and future taxaplans.

Government Budget Constraint Change in Current Government Expenditures Permanent Change in Government Expenditures Tax Cut: Ricardian Equivalence

Ricardian Equivalence Assumptions

 $16/\ 17$

- Assumes government and consumer had same r
 - In reality, governments often enjoy lower interest rate on debt
- Assumes the *same* consumer pays higher taxes in the future.
 - In reality, complicated tax policies may direct future taxes to different subpopulations
- Assumes the consumer lives long enough under the same tax bracket to pay future taxes
 - Future increase in taxes may be decades away
- Not explicitly modeled: Assumes conditions for socially optimal equilibrium
 - Slowly adjusting wages and prices, distorting tax policies, can create different predictions
- Why is this useful? Still explains realistic limitations of government policy, and how to address it. Define fiscal policies in terms of current taxes / government expenditures and future tax plans.

Reading and Exercises

Reading and Exercises

- Williamson, Chapter 9, pp. 306-321: Consumption and savings decisions
- Williamson, Chapter 9, pp. 321-324: Effects on decisions from changes in income
- Williamson, Chapter 9, pp. 327-332: Effects on decisions from changes in interest rates for savers and borrowers
- Williamson, Chapter 9, pp. 337-343: Ricardian Equivalence
- Canvas Quiz due Wed 11:59 PM. Multiple-choice, 15 questions, unlimited attempts allowed, only best score counts
- Homework/In-class Exercise due Fri 11:59 PM. We will work together in class on Thursday

イロン 不同 とくほと 不良 とう

Reading and Exercises

Reading and Exercises

- Williamson, Chapter 9, pp. 306-321: Consumption and savings decisions
- Williamson, Chapter 9, pp. 321-324: Effects on decisions from changes in income
- Williamson, Chapter 9, pp. 327-332: Effects on decisions from changes in interest rates for savers and borrowers
- Williamson, Chapter 9, pp. 337-343: Ricardian Equivalence
- Canvas Quiz due Wed 11:59 PM. Multiple-choice, 15 questions, unlimited attempts allowed, only best score counts
- Homework/In-class Exercise due Fri 11:59 PM. We will work together in class on Thursday

イロン 不同 とくほと 不良 とう

Reading and Exercises

17/17

イロン 不同 とくほと 不良 とう

Reading and Exercises

- Williamson, Chapter 9, pp. 306-321: Consumption and savings decisions
- Williamson, Chapter 9, pp. 321-324: Effects on decisions from changes in income
- Williamson, Chapter 9, pp. 327-332: Effects on decisions from changes in interest rates for savers and borrowers
- Williamson, Chapter 9, pp. 337-343: Ricardian Equivalence
- Canvas Quiz due Wed 11:59 PM. Multiple-choice, 15 questions, unlimited attempts allowed, only best score counts
- Homework/In-class Exercise due Fri 11:59 PM. We will work together in class on Thursday

Reading and Exercises

Reading and Exercises

- Williamson, Chapter 9, pp. 306-321: Consumption and savings decisions
- Williamson, Chapter 9, pp. 321-324: Effects on decisions from changes in income
- Williamson, Chapter 9, pp. 327-332: Effects on decisions from changes in interest rates for savers and borrowers
- Williamson, Chapter 9, pp. 337-343: Ricardian Equivalence
- Canvas Quiz due Wed 11:59 PM. Multiple-choice, 15 questions, unlimited attempts allowed, only best score counts
- Homework/In-class Exercise due Fri 11:59 PM. We will work together in class on Thursday

イロン 不同 とくほと 不良 とう

Reading and Exercises

Reading and Exercises

- Williamson, Chapter 9, pp. 306-321: Consumption and savings decisions
- Williamson, Chapter 9, pp. 321-324: Effects on decisions from changes in income
- Williamson, Chapter 9, pp. 327-332: Effects on decisions from changes in interest rates for savers and borrowers
- Williamson, Chapter 9, pp. 337-343: Ricardian Equivalence
- Canvas Quiz due Wed 11:59 PM. Multiple-choice, 15 questions, unlimited attempts allowed, only best score counts
- Homework/In-class Exercise due Fri 11:59 PM. We will work together in class on Thursday

イロン 不同 とくほと 不良 とう

Reading and Exercises

Reading and Exercises

- Williamson, Chapter 9, pp. 306-321: Consumption and savings decisions
- Williamson, Chapter 9, pp. 321-324: Effects on decisions from changes in income
- Williamson, Chapter 9, pp. 327-332: Effects on decisions from changes in interest rates for savers and borrowers
- Williamson, Chapter 9, pp. 337-343: Ricardian Equivalence
- Canvas Quiz due Wed 11:59 PM. Multiple-choice, 15 questions, unlimited attempts allowed, only best score counts
- Homework/In-class Exercise due Fri 11:59 PM. We will work together in class on Thursday