Estimating Correlation

Note on required packages: The following code required the package readxl to read in Excel files. If you
have not already done so, download, install, and load the library with the following code:

install.packages("readxl")

library("readxl")

A correlation exists between two variables when one is related to the other such that there is comovement.
Positive comovement means as one variable increases, the other variable also increases. Negative
comovement means as one variable increases, the other variable decreases.

Example: The website for Stock and Watson’s Introduction to Econometrics textbook includes a dataset
with economic growth data for 65 countries from 1960-1995, along with variables that may be related to
growth.

1. Download the dataset

The code below downloads the Excel file from the textbook’s website and assigns the dataset to a variable we
create and call growthdata.

download.file(
url="http://wps.aw.com/wps/media/objects/11422/11696965/data3eu/Growth.xlsx",
dest="Growth.xlsx")

growthdata <- read_excel("Growth.xlsx");

The dataset includes several variables. For this tutorial, we will focus on the average annual growth rate of
real GDP from 1960-1995 (labeled growth) and the average number of years of schooling for adult residents
in the country in 1960 (labeled yearsschool).

2. Plot the data
Let us first create a graph that illustrates the relationship between average years of schooling of adult residents
and the subsequent average growth rate over the next 35 years. We can create a scatter plot using the plot ()

function as follows:

plot (x=growthdata$yearsschool, y=growthdata$growth)
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growthdata$yearsschool

The first parameter, x=growthdata$yearsschool, tells the plot () function to put years of schooling on the
horizontal axis (aka the ‘x-axis’). The second parameter, y=growthdata$growth, tells the function to put
the real GDP growth rate on the vertical axis.

It appears that years of schooling and real GDP growth may have a positive relationship. We can compute
the best fitting straight line that describes this relationship with the function 1m() which stands for ‘linear
model’. In the code below, we call the 1m() function and assign its output to a variable we call growthmodel.

growthmodel <- 1lm(growthdata$growth ~ growthdata$yearsschool)

We passed to the function 1m() a single parameter which was a formula of the form y ~ x. This notation
means to fit a function that has the linear form y = a 4+ bz. The output variable growthmodel includes a lot
of objects and statistical tests that describe the linear relationship between the x and y variables.

We can find out what precisely what the equation of the line is by calling the coefficients variable in the
growthmodel object as follows:

growthmodel$coefficients

#it (Intercept) growthdata$yearsschool
## 0.9582918 0.2470275

The output means when Y = (growth rate of real GDP) and X = (average years of schooling of adults in
1960), the equation of the line that best describes the linear relationship between these two variables is
Y =0.958 4+ 0.247X.

In a later tutorial, we will discuss the precise equation and hypothesis testing on that equation at length. For
now, let us add a graph of this line to our scatter plot, so that we can see the data and the best fitting line
together on one graph. The function abline () allows us to add a line graph to our scatter plot. We will
add the best fitting line by passing growthmodel as a parameter to abline(). In the code below, we again
produce our scatter plot using the same call to the plot () function as above. Then on the very next line of
code, we call the abline function to produce the straight line.



plot (x=growthdata$yearsschool, y=growthdata$growth)
abline (growthmodel)

growthdata$growth
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We can see from this graph that an upward sloping line describes well the relationship between years of
schooling of adults in 1960 and the subsequent 35 year average growth rate of real GDP. That is, our variables
seem to display a positive, linear comovement.

3. Estimating the Pearson correlation coefficient

The Pearson correlation coefficient is a measure of the strength of a linear co-movement between two
variables. Linear comovement implies that either an upward sloping or downward sloping straight line
best describes the relationship.

The Pearson correlation coefficient takes values only between -1.0 and +1.0. The stronger is the relationship,
the closer the points on the scatter plot will be to the best fitting line. For a positive relationship, the stronger
it is, the closer the correlation coefficient will be to +1.0. For a negative relationship, the stronger it is, the
closer the correlation coefficient will be to -1.0. If the relationship is weaker, the observations will be farther
from the best fitting line, and the correlation coefficient will be closer to 0.0.

The function cor can be used to compute the Pearson correlation coefficient for two variables as follows:
cor (x=growthdata$yearsschool, y=growthdata$growth)
## [1] 0.3309986

We see from our result that the sample estimate for the Pearson correlation coefficient is 0.33. Since this
number is positive, the two variables are positively correlated.



4. Hypothesis testing and confidence intervals

Our sample estimate for the correlation coefficient is positive, but is this enough evidence that there is a
relationship between years of schooling and real GDP growth in the population? To answer this, let us
conduct a hypothesis test with the following null and alternative hypotheses:

Null hypothesis: p =10
Alternative hypothesis: p # 0

Following common statistical notation, we use p to denote the population Pearson correlation coefficient. The
null hypothesis says that the two variables are not correlated, i.e. that there is not a linear relationship. Like
all null hypotheses, it states that a population parameter is equal to some specified value (zero in this case).
The alternative hypothesis says that the two variables are correlated, that there is some linear relationship,
either positive or negative. The not-equal sign in the alternative hypothesis implies that this is a two-tailed
test, so either positive or negative Pearson correlation coefficients significantly far away from zero will allow
the null to be rejected.

The function cor.test can be called to conduct this hypothesis test as follows:

cor.test (x=growthdata$yearsschool, y=growthdata$growth, alternative="two.sided", conf.level=0.95)

#it

## DPearson's product-moment correlation

#i#

## data: growthdata$yearsschool and growthdata$growth
## t = 2.7842, df = 63, p-value = 0.007077

## alternative hypothesis: true correlation is not equal to O
## 95 percent confidence interval:

## 0.09474858 0.53195301

## sample estimates:

## cor

## 0.3309986

The first two parameters tell the function which variables to estimate a Pearson correlation coefficient for.
The parameter alternative="two.sided" tells the function to conduct a two-tailed hypothesis test. Finally
the parameter conf.level=0.95 is used to conduct a 95% confidence interval for the population Pearson
correlation coefficient.

The p-value for the hypothesis test is 0.007, which is far below a common significance level of 0.05. With a
high degree of confidence we can state we have found sufficient statistical evidence that the average years of
schooling is correlated subsequent real GDP growth.

Confidence Interval

The 95% confidence interval is also included in the output to cor.test. the results reveal an interval estimate
for the population Pearson correlation coefficient between 0.095 and 0.53. With 95% confidence, this interval
contains the true population Pearson correlation coefficient. This range includes all positive numbers, but
ranges from somewhat weak but positive correlation to strong positive correlation.
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