
Variance Decomposition and Goodness of Fit

1. Example: Monthly Earnings and Years of Education

In this tutorial, we will focus on an example that explores the relationship between total monthly earnings
(MonthlyEarnings) and a number of factors that may influence monthly earnings including including each
person’s IQ (IQ), a measure of knowledge of their job (Knowledge), years of education (YearsEdu), years
experience (YearsExperience), and years at current job (Tenure).

The code below downloads a CSV file that includes data on the above variables from 1980 for 935 individuals,
and assigns it to a dataset that we name wages.

download.file(
url="http://murraylax.org/datasets/wage2.csv",
dest="wage2.csv")

wages <- read.csv("wage2.csv");

We will estimate the following multiple regression equation using the above five explanatory variables:

yi = b0 + b1x1,i + b2x2,i + ...+ bkxk,i + ei,

where yi denotes the income of individual i, each xj,i denotes the value of explanatory variable j for individual
i, and k = 5 is the number of explanatory variables.

We can use the lm() function to estimate the regression as shown in the R code below. We follow this with a
call the summary() function to display the multiple regression results to the screen.

lmwages <- lm(wages$MonthlyEarnings
~ wages$IQ + wages$Knowledge + wages$YearsEdu
+ wages$YearsExperience + wages$Tenure)

summary(lmwages)

##
## Call:
## lm(formula = wages$MonthlyEarnings ~ wages$IQ + wages$Knowledge +
## wages$YearsEdu + wages$YearsExperience + wages$Tenure)
##
## Residuals:
## Min 1Q Median 3Q Max
## -826.33 -243.85 -44.83 180.83 2253.35
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -531.0392 115.0513 -4.616 4.47e-06 ***
## wages$IQ 3.6966 0.9651 3.830 0.000137 ***
## wages$Knowledge 8.2703 1.8273 4.526 6.79e-06 ***
## wages$YearsEdu 47.2698 7.2980 6.477 1.51e-10 ***
## wages$YearsExperience 11.8589 3.2494 3.650 0.000277 ***
## wages$Tenure 6.2465 2.4565 2.543 0.011156 *
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 365.4 on 929 degrees of freedom
## Multiple R-squared: 0.1878, Adjusted R-squared: 0.1834
## F-statistic: 42.97 on 5 and 929 DF, p-value: < 2.2e-16

2. Variance decomposition

The goal here is to identify how much variability in the outcome variable, average monthly earnings, is
explained by the all of the explanatory variables, including IQ, knowledge of a worker’s job, years of education,
years experience, and tenure.

We know that we will have variability in income - some people earn high income, others earn low income, and
a lot of people are in the middle. Some if it is explained by factors that are not included as variables in the
regression, like luck, ambition, personality, hard work, and other things we are not measuring. Some of the
differences in income are explained by differences in our explanatory variables. For example, we know that
on average, people with lower educational attainment earn lower income than people with higher educational
attainment. We know that on average, people with more experience earn higher incomes. How much of the
variability in income is explained by the variables in our regression, and how much is explained by other
factors we are neglecting or unable to account for?

2.1 Explained Variability

The Sum of Squares Explained (SSE) (sometimes referred to as the Sum of Squares Regression) is
a measure of the variability in the outcome variable that is explained by the explanatory variables, i.e. the
x-variables in your regression. It is given by the following sum:

SSE =
n∑

i=1
(ŷi − ȳ)2

The difference between ŷi and ȳ reflects the difference in the predicted value you would give for monthly
earnings based on on your explanatory variables (ŷi from your regression) and the predicted value you would
give without the benefit of your regression (your best estimate is the mean, ȳ).

The degrees of freedom explained is the number of coefficients that you could have the freedom to alter
in any arbitrary way and still have the regression deliver the same prediction for the sample mean ȳ (given
explanatory variables all equal to their means). Let k denote the number of variables in the regression, so
that k = 5. The degrees of freedom explained is equal to, dfE = k. For our case, we have five explanatory
variables explaining monthly earnings, so dfE = k = 5.

The mean sum of squares explained (MSE) is the following average measure for squared differences of
the predicted values and the mean:

MSE = SSE

dfE
.

2.2 Residual or Unexplained Variability

The Sum of Squares Residual (SSR) (sometimes referred to as the Sum of Squares Error) is a measure
of the variability in the outcome variable that is *not explained** by your regression, and therefore is due to
all the other factors that affect income besides IQ, knowledge, education, experience, or tenure. It is given by
the following sum:
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SSR =
n∑

i=1
(yi − ŷi)2 =

n∑
i=1

e2
i

The difference between yi and ŷi is equal to the residual, ei. That is the distance from someone’s actual
monthly earnings and the monthly earnings predicted on the regression line. The sum of squares residual is
an aggregate estimate for how much variability is not explained by the regression line.

The degrees of freedom residual is the number of observations you could have the freedom to alter in
any arbitrary way and still get the same estimates for b0 and b1. When k denotes the number of explanatory
variables in your regression, so that k = 5, the degrees of freedom residual is given by,

dfR = n− k − 1.

The mean squared residual is the following average measure for the squared residuals:

MSR = SSE

dfR
.

The mean squared residual is a useful statistic to examine, because it is a measure of on average how much
observations deviate from the regression line, so it speaks to how well your regression equation fits the data.
Because the squared term makes it difficult to interpret the magnitude, the root mean squared residual is
often reported:

RMSR =

√
SSE

dfR

This statistic is also often referred to as the standard error of the regression. The R output to the
summary() call above refers to this same statistic as the residual standard error. For our example
RMSR = 365.4. It can loosely be interpreted as on average our regression predicted value for monthly
earnings is off by $365.40, compared to the actual values.

2.3 Total Variability

You can show mathematically that SSE + SSR is equal to the following expression, which is referred to as
the Sum of Squares Total (SST):

SST =
n∑

i=1
(ȳi − yi)2

This is simply the numerator in the formula for the variance of yi, and so is a measure of total variability in
income.

The degrees of freedom total is equal to the number of observations you could have the freedom to alter
in any arbitrarily way and still get the same estimate for ȳ. The degrees of freedom total is given by,

dfT = n− 1.

If one were to define a Mean Squared Total, it would equal,
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MST = SST

dfT
=

n∑
i=1

(ȳi − yi)2

n− 1 ,

which is exactly the variance formula for yi.

2.4 Analysis of Variance (ANOVA)

An ANOVA table is a common way to summarize these measures of variability. You can compute these with
a call to the anova function, passing as a parameter the return value from the lm function, like the following:

anova(lmwages)

## Analysis of Variance Table
##
## Response: wages$MonthlyEarnings
## Df Sum Sq Mean Sq F value Pr(>F)
## wages$IQ 1 14589783 14589783 109.2767 < 2.2e-16 ***
## wages$Knowledge 1 7245227 7245227 54.2664 3.862e-13 ***
## wages$YearsEdu 1 3470866 3470866 25.9966 4.145e-07 ***
## wages$YearsExperience 1 2514057 2514057 18.8302 1.586e-05 ***
## wages$Tenure 1 863304 863304 6.4661 0.01116 *
## Residuals 929 124032931 133512
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA table does not report the sum of squares explained (SSE), which is the measure of explained
variability using all the regression coefficients. Rather, it reports the sum of squares explained by each
explanatory variable. To obtain the total sum of squares explained, you could add up the values in the column
labeled Sum Sq.

The row labeled Residuals displays the sum of squared residuals (SSR).

3. Coefficient of Determination

The coefficient of determination, sometimes referred to as the R-Squared value, is a measure of what
percentage of the variability in your outcome variable is explained by your explanatory variables. It is given
by the expression,

R2 = SSE

SST

where the numerator is the amount of variability explained and the denominator is the total amount of
variability; therefore the ratio is the percentage of variability explained.

The summary() function that we called earlier reported the coefficient of determination. We repeat the call
to summary() here to view it again.

summary(lmwages);
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##
## Call:
## lm(formula = wages$MonthlyEarnings ~ wages$IQ + wages$Knowledge +
## wages$YearsEdu + wages$YearsExperience + wages$Tenure)
##
## Residuals:
## Min 1Q Median 3Q Max
## -826.33 -243.85 -44.83 180.83 2253.35
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -531.0392 115.0513 -4.616 4.47e-06 ***
## wages$IQ 3.6966 0.9651 3.830 0.000137 ***
## wages$Knowledge 8.2703 1.8273 4.526 6.79e-06 ***
## wages$YearsEdu 47.2698 7.2980 6.477 1.51e-10 ***
## wages$YearsExperience 11.8589 3.2494 3.650 0.000277 ***
## wages$Tenure 6.2465 2.4565 2.543 0.011156 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 365.4 on 929 degrees of freedom
## Multiple R-squared: 0.1878, Adjusted R-squared: 0.1834
## F-statistic: 42.97 on 5 and 929 DF, p-value: < 2.2e-16

The statistic called Multiple R-squared is the coefficient of determination, in this case equal to 0.1878.
This means that 18.78% of the variability in people’s monthly earnings is explained by IQ, knowledge of
one’s job, educational attainment, experience, and tenure. The remaining 81.22% of variability in monthly
earnings we cannot explain.

The R-squared value will increase as you put in additional variables into the regression, regardless of whether
the additional explanatory variables are meaningful for the outcome variable. By statistical chance, we will
see any variable at least slightly correlated to the outcome variable.

The Adjusted R-Squared value is an alternative measure that included a penalty for additional variables
to the regression. If the additional variable was meaningful enough, the increase in explanatory power, and
therefore the increase in the R-squared value, should more than offset the penalty.

Let us add another variable to the regression. Let us include age as an explanatory variable. This will allow
us to determine how much age influences monthly earnings, leaving fixed the effects of experience, tenure, and
workplace knowledge. The call below runs our multiple regression with our new explanatory variable.

lmwages <- lm(wages$MonthlyEarnings
~ wages$IQ + wages$Knowledge + wages$YearsEdu
+ wages$YearsExperience + wages$Tenure + wages$Age)

summary(lmwages)

##
## Call:
## lm(formula = wages$MonthlyEarnings ~ wages$IQ + wages$Knowledge +
## wages$YearsEdu + wages$YearsExperience + wages$Tenure + wages$Age)
##
## Residuals:
## Min 1Q Median 3Q Max
## -808.9 -242.3 -44.1 183.7 2259.6
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -637.280 166.557 -3.826 0.000139 ***
## wages$IQ 3.861 0.983 3.928 9.21e-05 ***
## wages$Knowledge 7.576 1.990 3.808 0.000149 ***
## wages$YearsEdu 46.241 7.391 6.256 6.02e-10 ***
## wages$YearsExperience 10.275 3.713 2.767 0.005763 **
## wages$Tenure 5.945 2.480 2.397 0.016735 *
## wages$Age 4.497 5.097 0.882 0.377870
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 365.4 on 928 degrees of freedom
## Multiple R-squared: 0.1885, Adjusted R-squared: 0.1833
## F-statistic: 35.93 on 6 and 928 DF, p-value: < 2.2e-16

We see that the R-squared value increased from 18.78% to 18.85%, but there was a decrease in the adjusted
R-squared value from 18.34% to 18.33%. A fair interpretation would be that after accounting for all of
our other explanatory variables adding age as an explanatory variable adds little explanatory power to the
regression.

4. Joint F-test for Regression Validity

The variance decomposition of our outcome variable to what is explained by the regression versus what is
left unexplained can also be used to construct a hypothesis test for whether or not any of our regression
coefficients are valid.

The null and alternative hypotheses for the test are given by,

H0 : β1 = β2 = ... = βk = 0

H1 : At least one βj 6= 0

The null hypothesis says that nothing you put in your regression equation helps explain your outcome variable.
The alternative hypothesis humbly states that at least one explanatory variable helped explain the outcome
variable.

The test statistic is an F-statistic that is given by,

F = MSE

MSR

In the numerator is a measure of explained average variability of the outcome variable, and in the denominator
is a measure of unexplained average variability of the outcome variable. The larger is the F-statistic, the
larger is the ratio of explained variability.

Let us again estimate our original multiple regression model and show the summary output.

lmwages <- lm(wages$MonthlyEarnings
~ wages$IQ + wages$Knowledge + wages$YearsEdu
+ wages$YearsExperience + wages$Tenure)

summary(lmwages)
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##
## Call:
## lm(formula = wages$MonthlyEarnings ~ wages$IQ + wages$Knowledge +
## wages$YearsEdu + wages$YearsExperience + wages$Tenure)
##
## Residuals:
## Min 1Q Median 3Q Max
## -826.33 -243.85 -44.83 180.83 2253.35
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -531.0392 115.0513 -4.616 4.47e-06 ***
## wages$IQ 3.6966 0.9651 3.830 0.000137 ***
## wages$Knowledge 8.2703 1.8273 4.526 6.79e-06 ***
## wages$YearsEdu 47.2698 7.2980 6.477 1.51e-10 ***
## wages$YearsExperience 11.8589 3.2494 3.650 0.000277 ***
## wages$Tenure 6.2465 2.4565 2.543 0.011156 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 365.4 on 929 degrees of freedom
## Multiple R-squared: 0.1878, Adjusted R-squared: 0.1834
## F-statistic: 42.97 on 5 and 929 DF, p-value: < 2.2e-16

The result of the F-test is an F-statistic equal to 42.97 and a p-value equal to 2.2x10−16. The p-value is far
below a typical significance level of α = 0.05, so we reject the null hypothesis. We conclude that we have
statistical evidence that at least one explanatory variable helps explain the outcome variable.
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