
Non-linearities in Simple Regression

1. Example: Monthly Earnings and Years of Education

In this tutorial, we will focus on an example that explores the relationship between total monthly earnings
and years of education.

The code below downloads a CSV file that includes data from 1980 for 935 individuals on variables including
their total monthly earnings (MonthlyEarnings) and a number of variables that could influence income,
including years of education (YearsEdu) and assigns it to a dataset that we call wages.

wages <- read.csv("http://murraylax.org/datasets/wage2.csv");

We estimate the simple regression with the following call to lm() and store the output in an object we call
lmwages:

lmwages <- lm(wages$MonthlyEarnings ~ wages$YearsEdu)

2. Log Function

It may not be appropriate that there is a linear relationship between years of education and monthly earnings.
With a linear relationship, we assume that each year of education results in the same dollar increase in
monthly earnings.

It may be more appropriate to suggest that each year of education leads to a similar percentage increase
in monthly earnings. To estimate such a relationship, we estimate the following regression equation that
includes the natural logarithm of the dependent variable (monthly earnings):

ln(yi) = b0 + b1xi + ei

where yi denotes the income of individual i, ln(yi) is the natural logarithm of yi, and xi denotes the number
of years of education of individual i.

When we have a relationship of the form ln(y) = b0 + b1x, this can be transformed to the exponential function,
y = exp b0 + b1x. To get an idea what this function looks like, we can make up some numbers for b0 and b1
and plot the function.

In the line of code below we create a function called expfun and set it equal to the function, f(x) = exp 2 + 5x.

expfun <- function(x) exp(2 + 5*x)

We can see a plot of this function with a simple call to plot():

plot(expfun)
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We can see that this kind of relationship implies that the outcome variable, y, increases and an increasing
rate as x increases.

Let us look at what the function looks like if instead the coefficient for b1 is negative. In the code below, we
create the function expfun, but with a coefficient on x equal to −5 instead of +5, then plot it.

expfun <- function(x) exp(2 - 5*x)
plot(expfun)
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Here we see this means that the outcome variable, y, decreases as x increases, and at a decreasing rate.
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3. Regression with a log dependent variable

We estimate the regression equation with the log of monthly earnings as the outcome variable with the
following call to lm() that assigns the output to an object that we call loglmwages:

loglmwages <- lm(log(wages$MonthlyEarnings) ~ wages$YearsEdu)

We can view the summary of the regression output with the following call to summary():

summary(loglmwages)

##
## Call:
## lm(formula = log(wages$MonthlyEarnings) ~ wages$YearsEdu)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.94620 -0.24832 0.03507 0.27440 1.28106
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.973062 0.081374 73.40 <2e-16 ***
## wages$YearsEdu 0.059839 0.005963 10.04 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4003 on 933 degrees of freedom
## Multiple R-squared: 0.09742, Adjusted R-squared: 0.09645
## F-statistic: 100.7 on 1 and 933 DF, p-value: < 2.2e-16

The coefficient years of education is equal to 0.0598, which is how much the predicted value for
ln(monthly earnings) increases when educational attainment increases by one year. We can express this
mathematically as,

b1 = ∆ln(ŷ)
∆x = 0.0598

It turns out that this is a close approximation to the percentage increase in y from a one unit increase in x.
That is,

∆ln(ŷ)
∆x ≈ %∆ŷ

∆x .

Therefore, our regression predicts that a one additional year of education is associated with approximately a
6% higher monthly salary.

4. Log-Log Relationship

Let us instead consider the possibility for the following non-linear relationship between monthly earnings and
educational attainment:

ln(yi) = b0 + b1ln(xi) + εi
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Let us make up some numbers for b0 and b1 to visualize what such a function looks like. First let us solve for
yi by taking the exponential function of both sides of the equation. This yields the equivalent function:

yi = exp b0 + b1ln(xi) + εi

In the code below, we make up a function with b0 = 2 and b1 = 5, call it loglogfun and plot the curve to
see what it looks like:

loglogfun <- function(x) exp(2 + 5*log(x))
plot(loglogfun)
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The function also predicts that y increases at an increasing rate with x, but an examination of the magnitude
of the y axis labels reveals rate of increase in smaller.

We can estimate a log-log regression of monthly earnings on educational attainment with the following call to
lm(), where the output is assigned to an object we call lglglmwages:

lglglmwages <- lm( log(wages$MonthlyEarnings) ~ log(wages$YearsEdu) )

We summarize the output with the following call to the summary() function:

summary(lglglmwages)

##
## Call:
## lm(formula = log(wages$MonthlyEarnings) ~ log(wages$YearsEdu))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.94925 -0.24818 0.03866 0.27282 1.27167
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.63932 0.21297 21.78 <2e-16 ***
## log(wages$YearsEdu) 0.82694 0.08215 10.07 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4002 on 933 degrees of freedom
## Multiple R-squared: 0.09796, Adjusted R-squared: 0.09699
## F-statistic: 101.3 on 1 and 933 DF, p-value: < 2.2e-16

The coefficient b1 = 0.8269 is a measure of how much the natural log of earnings increases when the natural
log of educational attainment increases by one unit, expressed mathematically as,

b1 = ∆ln(ŷ)
∆ln(x) = 0.8269

It turns out that this is approximately equal to the predicted percentage increase in y when x increases by
one percent. Mathematically,

b1 = ∆ln(ŷ)
∆ln(x) = %∆ŷ

%∆x = 0.8269

That is, monthly earnings on average are 0.83% higher for each 1% increase in education attainment. In
economics, we call a measure like this an elasticity.
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