Analysis of Variance (ANOVA)

MGMT 662: Integrative Research Project

August 7, 2008.
Goals of this class meeting

- Learn how to test for significant differences in means from two or more groups.
- Learn how to account for an additional factor.
- Learn how to test for significant differences in medians from two or more groups. Why?
One-Way ANOVA

- Method for testing for significant differences among means from two or more groups.
- Essentially an extension of the t-test for testing the differences between two means.
- Uses measures of variance to measure for differences in means.
- Total variation in your data is decomposed into two components:
 - Among-group variation: variability that is due to differences among groups, also called explained variation.
 - Within-group variation: total variability within each of the groups, this is unexplained variation.
One-Way ANOVA

- Method for testing for significant differences among means from two or more groups.
- Essentially an extension of the t-test for testing the differences between two means.
- Uses measures of variance to measure for differences in means.
- Total variation in your data is decomposed into two components:
 - Among-group variation: variability that is due to differences among groups, also called explained variation.
 - Within-group variation: total variability within each of the groups, this is unexplained variation.
Method for testing for significant differences among means from two or more groups.

Essentially an extension of the t-test for testing the differences between two means.

Uses measures of variance to measure for differences in means.

Total variation in your data is decomposed into two components:

- Among-group variation: variability that is due to differences among groups, also called explained variation.
- Within-group variation: total variability within each of the groups, this is unexplained variation.
One-Way ANOVA

- Method for testing for significant differences among means from two or more groups.
- Essentially an extension of the t-test for testing the differences between two means.
- Uses measures of variance to measure for differences in means.
- Total variation in your data is decomposed into two components:
 - Among-group variation: variability that is due to differences among groups, also called explained variation.
 - Within-group variation: total variability within each of the groups, this is unexplained variation.
One-Way ANOVA

- Method for testing for significant differences among means from two or more groups.
- Essentially an extension of the t-test for testing the differences between two means.
- Uses measures of variance to measure for differences in means.
- Total variation in your data is decomposed into two components:
 - **Among-group variation**: variability that is due to differences among groups, also called *explained* variation.
 - **Within-group variation**: total variability within each of the groups, this is unexplained variation.
One-Way ANOVA

- Method for testing for significant differences among means from two or more groups.
- Essentially an extension of the t-test for testing the differences between two means.
- Uses measures of variance to measure for differences in means.
- Total variation in your data is decomposed into two components:
 - **Among-group variation**: variability that is due to differences among groups, also called *explained* variation.
 - **Within-group variation**: total variability within each of the groups, this is unexplained variation.
Variance Decomposition

- **Sum of squares groups (SSG):**
 \[
 SSG = \sum_{k=1}^{K} n_k (\bar{x}_k - \bar{x})^2
 \]
 - \(K\): number of groups.
 - \(\bar{x}_k\) is the mean of group \(k\).
 - \(\bar{x}\) is the mean of all the data.

- **Sum of squares within-group (SSW):**
 \[
 SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x}_k)^2
 \]

- **Sum of squares total (SST):**
 \[
 SST = SSG + SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x})^2
 \]
Variance Decomposition

- **Sum of squares groups (SSG):**
 \[SSG = \sum_{k=1}^{K} n_k (\bar{x}_k - \bar{x})^2 \]
 - \(K \): number of groups.
 - \(\bar{x}_k \) is the mean of group \(k \).
 - \(\bar{x} \) is the mean of all the data.

- **Sum of squares within-group (SSW):**
 \[SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x}_k)^2 \]

- **Sum of squares total (SST):**
 \[SST = SSG + SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x})^2 \]
Variance Decomposition

- **Sum of squares groups (SSG):**

\[
SSG = \sum_{k=1}^{K} n_k (\bar{x}_k - \bar{x})^2
\]

- **K:** number of groups.
 - \(\bar{x}_k\) is the mean of group \(k\).
 - \(\bar{x}\) is the mean of all the data.

- **Sum of squares within-group (SSW):**

\[
SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x}_k)^2
\]

- **Sum of squares total (SST):**

\[
SST = SSG + SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x})^2
\]
Variance Decomposition

- **Sum of squares groups (SSG):**
 \[SSG = \sum_{k=1}^{K} n_k (\bar{x}_k - \bar{x})^2 \]
 - \(K \): number of groups.
 - \(\bar{x}_k \) is the mean of group \(k \).
 - \(\bar{x} \) is the mean of all the data.

- **Sum of squares within-group (SSW):**
 \[SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x}_k)^2 \]

- **Sum of squares total (SST):**
 \[SST = SSG + SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x})^2 \]
Variance Decomposition

- **Sum of squares groups (SSG):**
 \[
 SSG = \sum_{k=1}^{K} n_k (\bar{x}_k - \bar{x})^2
 \]
 - K: number of groups.
 - \bar{x}_k is the mean of group k.
 - \bar{x} is the mean of all the data.

- **Sum of squares within-group (SSW):**
 \[
 SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x}_k)^2
 \]

- **Sum of squares total (SST):**
 \[
 SST = SSG + SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x})^2
 \]
Variance Decomposition

- **Sum of squares groups (SSG):**

\[SSG = \sum_{k=1}^{K} n_k (\bar{x}_k - \bar{x})^2 \]

- **K**: number of groups.
- **\(\bar{x}_k \)** is the mean of group \(k \).
- **\(\bar{x} \)** is the mean of all the data.

- **Sum of squares within-group (SSW):**

\[SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x}_k)^2 \]

- **Sum of squares total (SST):**

\[SST = SSG + SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x})^2 \]
- **Sum of squares groups (SSG):**
 \[
 SSG = \sum_{k=1}^{K} n_k (\bar{x}_k - \bar{x})^2
 \]

 - K: number of groups.
 - \(\bar{x}_k\) is the mean of group \(k\).
 - \(\bar{x}\) is the mean of all the data.

- **Sum of squares within-group (SSW):**
 \[
 SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x}_k)^2
 \]

- **Sum of squares total (SST):**
 \[
 SST = SSG + SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x})^2
 \]
Variance Decomposition

- **Sum of squares groups (SSG):**

 \[
 SSG = \sum_{k=1}^{K} n_k (\bar{x}_k - \bar{x})^2
 \]

 - \(K\): number of groups.
 - \(\bar{x}_k\) is the mean of group \(k\).
 - \(\bar{x}\) is the mean of all the data.

- **Sum of squares within-group (SSW):**

 \[
 SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x}_k)^2
 \]

- **Sum of squares total (SST):**

 \[
 SST = SSG + SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x})^2
 \]
Variance Decomposition

- **Sum of squares groups (SSG):**
 \[SSG = \sum_{k=1}^{K} n_k (\bar{x}_k - \bar{x})^2 \]

 - K: number of groups.
 - \(\bar{x}_k \) is the mean of group \(k \).
 - \(\bar{x} \) is the mean of all the data.

- **Sum of squares within-group (SSW):**
 \[SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x}_k)^2 \]

- **Sum of squares total (SST):**
 \[SST = SSG + SSW = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{i,k} - \bar{x})^2 \]
Hypothesis Test

- **Null hypothesis:** \(\mu_1 = \mu_2 = \ldots = \mu_K \)
- **Alternative hypothesis:** At least one of the means are different from the others.
- **F-test** (has an F-distribution with degrees of freedom \(K - 1, n - 1 \)):
 \[
 F = \frac{SSG/(K - 1)}{SSW/(n - 1)}
 \]
- Intuitively, what is implied when the F-statistic is large?
Hypothesis Test

- Null hypothesis: $\mu_1 = \mu_2 = \ldots = \mu_K$
- Alternative hypothesis: At least one of the means are different from the others.
- F-test (has an F-distribution with degrees of freedom $K - 1$, $n - 1$):
 \[F = \frac{SSG/(K - 1)}{SSW/(n - 1)} \]
- Intuitively, what is implied when the F-statistic is large?
Hypothesis Test

- Null hypothesis: $\mu_1 = \mu_2 = \ldots = \mu_K$
- Alternative hypothesis: At least one of the means are different from the others.
- F-test (has an F-distribution with degrees of freedom $K - 1$, $n - 1$):
 \[F = \frac{SSG/(K - 1)}{SSW/(n - 1)} \]

- Intuitively, what is implied when the F-statistic is large?
Null hypothesis: $\mu_1 = \mu_2 = \ldots = \mu_K$

Alternative hypothesis: At least one of the means are different from the others.

F-test (has an F-distribution with degrees of freedom $K - 1$, $n - 1$):

$$F = \frac{SSG/(K - 1)}{SSW/(n - 1)}$$

Intuitively, what is implied when the F-statistic is large?
Hypothesis Test

- Null hypothesis: $\mu_1 = \mu_2 = \ldots = \mu_K$
- Alternative hypothesis: At least one of the means are different from the others.

F-test (has an F-distribution with degrees of freedom $K - 1$, $n - 1$):

$$F = \frac{SSG/(K - 1)}{SSW/(n - 1)}$$

- Intuitively, what is implied when the F-statistic is large?
Assumptions behind One-way ANOVA F-test

- **Randomness**: individual observations are assigned to groups randomly.
- **Independence**: individuals in each group are independent from individuals in another group.
- **Sufficiently large (?) sample size**, or else population must have a normal distribution.
- **Homogeneity of variance**: the variances of each of the K groups must be equal ($\sigma_1^2 = \sigma_2^2 = \ldots \sigma_K^2$).
 - Levene test for homogeneity of variance can be used to test for this.
Assumptions behind One-way ANOVA F-test

- Randomness: individual observations are assigned to groups randomly.
- Independence: individuals in each group are independent from individuals in another group.
- Sufficiently large (?) sample size, or else population must have a normal distribution.
- Homogeneity of variance: the variances of each of the K groups must be equal ($\sigma_1^2 = \sigma_2^2 = ... \sigma_K^2$).
 - Levene test for homogeneity of variance can be used to test for this.
Randomness: individual observations are assigned to groups randomly.

Independence: individuals in each group are independent from individuals in another group.

Sufficiently large (?) sample size, or else population must have a normal distribution.

Homogeneity of variance: the variances of each of the K groups must be equal ($\sigma_1^2 = \sigma_2^2 = ... \sigma_K^2$).

- Levene test for homogeneity of variance can be used to test for this.
Assumptions behind One-way ANOVA F-test

- **Randomness:** individual observations are assigned to groups randomly.
- **Independence:** individuals in each group are independent from individuals in another group.
- **Sufficiently large (?) sample size,** or else population must have a normal distribution.
- **Homogeneity of variance:** the variances of each of the K groups must be equal ($\sigma_1^2 = \sigma_2^2 = \ldots \sigma_K^2$).
 - Levene test for homogeneity of variance can be used to test for this.
Assumptions behind One-way ANOVA F-test

- Randomness: individual observations are assigned to groups *randomly*.
- Independence: individuals in each group are independent from individuals in another group.
- Sufficiently large (?) sample size, or else population must have a normal distribution.
- Homogeneity of variance: the variances of each of the K groups must be equal ($\sigma_1^2 = \sigma_2^2 = \ldots \sigma_K^2$).
 - Levene test for homogeneity of variance can be used to test for this.
Example: Crime Rates

- Data on 47 states from 1960 (I know it's old) on the crime rate and a number of factors that may influence the crime rate.
- In particular, I made a variable that put unemployment into categories:
 - Unemployment = 1 if unemployment rate was less than 8%.
 - Unemployment = 2 if unemployment rate was between 8 and 10%.
 - Unemployment = 3 if unemployment rate was greater than 10%.
- I also made a variable that categorized schooling:
 - Schooling = 1 if mean years of schooling for the given state was less than 10 years.
 - Schooling = 2 otherwise.
- Is there statistical evidence that the mean crime rate is different among the different categories for the level of unemployment?
Data on 47 states from 1960 (I know it's old) on the crime rate and a number of factors that may influence the crime rate.

In particular, I made a variable that put unemployment into categories:

- Unemployment = 1 if unemployment rate was less than 8%.
- Unemployment = 2 if unemployment rate was between 8 and 10%.
- Unemployment = 3 if unemployment rate was greater than 10%.

I also made a variable that categorized schooling:

- Schooling = 1 if mean years of schooling for given state was less than 10 years.
- Schooling = 2 otherwise.

Is there statistical evidence that the mean crime rate is different among the different categories for the level of unemployment?
Example: Crime Rates

- Data on 47 states from 1960 (I know it's old) on the crime rate and a number of factors that may influence the crime rate.
- In particular, I made a variable that put unemployment into categories:
 - Unemployment = 1 if unemployment rate was less than 8%.
 - Unemployment = 2 if unemployment rate was between 8 and 10%.
 - Unemployment = 3 if unemployment rate was greater than 10%.
- I also made a variable that categorized schooling:
 - Schooling = 1 if mean years of schooling for given state was less than 10 years.
 - Schooling = 2 otherwise.
- Is there statistical evidence that the mean crime rate is different among the different categories for the level of unemployment?
Example: Crime Rates

- Data on 47 states from 1960 (I know it’s old) on the crime rate and a number of factors that may influence the crime rate.
- In particular, I made a variable that put unemployment into categories:
 - Unemployment = 1 if unemployment rate was less than 8%.
 - Unemployment = 2 if unemployment rate was between 8 and 10%.
 - Unemployment = 3 if unemployment rate was greater than 10%.
- I also made a variable that categorized schooling:
 - Schooling = 1 if mean years of schooling for given state was less than 10 years.
 - Schooling = 2 otherwise.
- Is there statistical evidence that the mean crime rate is different among the different categories for the level of unemployment?
Kruskal-Wallis Rank Test: non-parametric technique for testing for differences in the *medians* among two or more groups.

- Like the Mann-Whitney U-test, uses information about the ranks of the observations, instead of the actual sizes.
- Null hypothesis: $\theta_1 = \theta_2 = ... = \theta_K$ (i.e. all groups have the same median).
- Alternative hypothesis: at least one of the medians differ.
- As the sample size gets large (over 5 per group some say!), the Kruskal-Wallis test statistic approaches a χ^2 distribution with $K - 1$ degrees of freedom.
- For small sample sizes: possible to compute exact p-values without depending on asymptotic distributions.
Nonparametric One-way ANOVA

- Kruskal-Wallis Rank Test: non-parametric technique for testing for differences in the *medians* among two or more groups.
- Like the Mann-Whitney U-test, uses information about the ranks of the observations, instead of the actual sizes.
- Null hypothesis: $\theta_1 = \theta_2 = \ldots = \theta_K$ (i.e. all groups have the same median).
- Alternative hypothesis: at least one of the medians differ.
- As the sample size gets large (over 5 per group some say!), the Kruskal-Wallis test statistic approaches a χ^2 distribution with $K - 1$ degrees of freedom.
- For small sample sizes: possible to compute exact p-values without depending on asymptotic distributions.
Nonparametric One-way ANOVA

- Kruskal-Wallis Rank Test: non-parametric technique for testing for differences in the *medians* among two or more groups.
- Like the Mann-Whitney U-test, uses information about the ranks of the observations, instead of the actual sizes.
- Null hypothesis: $\theta_1 = \theta_2 = \ldots = \theta_K$ (i.e. all groups have the same median).
- Alternative hypothesis: at least one of the medians differ.
- As the sample size gets large (over 5 per group some say!), the Kruskal-Wallis test statistic approaches a χ^2 distribution with $K - 1$ degrees of freedom.
- For small sample sizes: possible to compute exact p-values without depending on asymptotic distributions.
Kruskal-Wallis Rank Test: non-parametric technique for testing for differences in the *medians* among two or more groups.

Like the Mann-Whitney U-test, uses information about the ranks of the observations, instead of the actual sizes.

Null hypothesis: \(\theta_1 = \theta_2 = \ldots = \theta_K \) (i.e. all groups have the same median).

Alternative hypothesis: at least one of the medians differ.

As the sample size gets large (over 5 per group some say!), the Kruskal-Wallis test statistic approaches a \(\chi^2 \) distribution with \(K - 1 \) degrees of freedom.

For small sample sizes: possible to compute exact p-values without depending on asymptotic distributions.
Kruskal-Wallis Rank Test: non-parametric technique for testing for differences in the *medians* among two or more groups.

Like the Mann-Whitney U-test, uses information about the ranks of the observations, instead of the actual sizes.

Null hypothesis: $\theta_1 = \theta_2 = \ldots = \theta_K$ (i.e. all groups have the same median).

Alternative hypothesis: at least one of the medians differ.

As the sample size gets large (over 5 per group some say!), the Kruskal-Wallis test statistic approaches a χ^2 distribution with $K - 1$ degrees of freedom.

For small sample sizes: possible to compute exact p-values without depending on asymptotic distributions.
Kruskal-Wallis Rank Test: non-parametric technique for testing for differences in the *medians* among two or more groups.

Like the Mann-Whitney U-test, uses information about the ranks of the observations, instead of the actual sizes.

Null hypothesis: \(\theta_1 = \theta_2 = \ldots = \theta_K \) (i.e. all groups have the same median).

Alternative hypothesis: at least one of the medians differ.

As the sample size gets large (over 5 per group some say!), the Kruskal-Wallis test statistic approaches a \(\chi^2 \) distribution with \(K - 1 \) degrees of freedom.

For small sample sizes: possible to compute exact p-values without depending on asymptotic distributions.
Assumptions for Kruskal-Wallis Test

- **Randomness:** individual observations are assigned to groups *randomly*.
- **Independence:** individuals in each group are independent from individuals in another group.
- **Only the location (i.e. the center) of the distributions differ among the groups. The populations otherwise have the same distribution.**
Randomness: individual observations are assigned to groups randomly.

Independence: individuals in each group are independent from individuals in another group.

Only the location (i.e. the center) of the distributions differ among the groups. The populations otherwise have the same distribution.
Randomness: individual observations are assigned to groups randomly.

Independence: individuals in each group are independent from individuals in another group.

Only the location (i.e. the center) of the distributions differ among the groups. The populations otherwise have the same distribution.
One-way ANOVA, the effects of one factor where examined.

Two-way ANOVA, also called two-factor factorial design: two factors are simultaneously evaluated.

Total variance is decomposed into:

- variability explained by being in different groups of factor A.
- variability explained by being in different groups of factor B.
- variability explained by the interaction of factors A and B.
- unexplained variability.
One-way ANOVA, the effects of one factor where examined.

Two-way ANOVA, also called **two-factor factorial design**: two factors are simultaneously evaluated.

Total variance is decomposed into:
- variability explained by being in different groups of factor A.
- variability explained by being in different groups of factor B.
- variability explained by the interaction of factors A and B.
- unexplained variability.
One-way ANOVA, the effects of one factor where examined.

Two-way ANOVA, also called *two-factor factorial design*: two factors are simultaneously evaluated.

Total variance is decomposed into:
- variability explained by being in different groups of factor A.
- variability explained by being in different groups of factor B.
- variability explained by the interaction of factors A and B.
- unexplained variability.
One-way ANOVA, the effects of one factor where examined.

Two-way ANOVA, also called *two-factor factorial design*: two factors are simultaneously evaluated.

Total variance is decomposed into:

- variability explained by being in different groups of factor A.
- variability explained by being in different groups of factor B.
- variability explained by the interaction of factors A and B.
- unexplained variability.
One-way ANOVA, the effects of one factor are examined.

Two-way ANOVA, also called **two-factor factorial design**: two factors are simultaneously evaluated.

Total variance is decomposed into:

- variability explained by being in different groups of factor A.
- variability explained by being in different groups of factor B.
- variability explained by the interaction of factors A and B.
- unexplained variability.
One-way ANOVA, the effects of one factor are examined.

Two-way ANOVA, also called **two-factor factorial design**: two factors are simultaneously evaluated.

Total variance is decomposed into:
- variability explained by being in different groups of factor A.
- variability explained by being in different groups of factor B.
- variability explained by the interaction of factors A and B.
- unexplained variability.
One-way ANOVA, the effects of one factor were examined.

Two-way ANOVA, also called **two-factor factorial design**: two factors are simultaneously evaluated.

Total variance is decomposed into:
- variability explained by being in different groups of factor A.
- variability explained by being in different groups of factor B.
- variability explained by the interaction of factors A and B.
- unexplained variability.
Goals of ANOVA:
- Determine if schooling level (factor A) leads to different levels for crime rate.
- Determine if unemployment level (factor B) leads to different levels for crime rate.
- Determine if schooling and unemployment have a joint effect on crime rate (i.e. does the unemployment level effect the impact of schooling on the crime rate, or vice versa).
ANOVA Descriptive Statistics

<table>
<thead>
<tr>
<th>Schooling Level</th>
<th>Less than 8%</th>
<th>8% to 10%</th>
<th>More than 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 10 years</td>
<td>\bar{x}_{11}</td>
<td>\bar{x}_{12}</td>
<td>\bar{x}_{13}</td>
</tr>
<tr>
<td>10 years or more</td>
<td>\bar{x}_{21}</td>
<td>\bar{x}_{22}</td>
<td>\bar{x}_{23}</td>
</tr>
</tbody>
</table>

Goals of ANOVA:

- Determine if schooling level (factor A) leads to different levels for crime rate.
- Determine if unemployment level (factor B) leads to different levels for crime rate.
- Determine if schooling and unemployment have a joint effect on crime rate (i.e. does the unemployment level effect the impact of schooling on the crime rate, or vice versa).
ANOVA Descriptive Statistics

<table>
<thead>
<tr>
<th>Schooling Level</th>
<th>Unemployment Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Less than 8%</td>
</tr>
<tr>
<td>Less than 10 years</td>
<td>\bar{x}_{11}</td>
</tr>
<tr>
<td>10 years or more</td>
<td>\bar{x}_{21}</td>
</tr>
</tbody>
</table>

- **Goals of ANOVA:**
 - Determine if schooling level (factor A) leads to different levels for crime rate.
 - Determine if unemployment level (factor B) leads to different levels for crime rate.
 - Determine if schooling and unemployment have a joint effect on crime rate (i.e. does the unemployment level effect the impact of schooling on the crime rate, or vice versa).
Goals of ANOVA:

- Determine if schooling level (factor A) leads to different levels for crime rate.
- Determine if unemployment level (factor B) leads to different levels for crime rate.
- Determine if schooling and unemployment have a joint effect on crime rate (i.e. does the unemployment level effect the impact of schooling on the crime rate, or vice versa).

ANOVA Descriptive Statistics

<table>
<thead>
<tr>
<th>Schooling Level</th>
<th>Unemployment Level</th>
<th>Less than 8%</th>
<th>8% to 10%</th>
<th>More than 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 10 years</td>
<td>\bar{x}_{11}</td>
<td>\bar{x}_{12}</td>
<td>\bar{x}_{13}</td>
<td></td>
</tr>
<tr>
<td>10 years or more</td>
<td>\bar{x}_{21}</td>
<td>\bar{x}_{22}</td>
<td>\bar{x}_{23}</td>
<td></td>
</tr>
</tbody>
</table>
Hypothesis Test for Factor A

- \(H_0 : \mu_1 = \mu_2 = \ldots = \mu_r. \)
- \(H_a : \) At least one of the means of the groups in factor A are different from the others.

\[
F = \frac{SSA/(r-1)}{SSE/(N-rc)}
\]

- F-statistic has degrees of freedom \(r - 1, \) \(N - rc. \)
- \(N = \sum_{i=1}^{r} n_i. \)
- \(r \) (number of rows) is the number of groups for factor A.
- \(c \) (number of columns) is the number of groups for factor B.
- \(\mu_i. \) is the mean of group \(i \) of factor A.
- SSA is the sum of squares from factor A.
Hypothesis Test for Factor A

- $H_0 : \mu_1 = \mu_2 = \ldots = \mu_r$.
- $H_a : \text{At least one of the means of the groups in factor A are different from the others.}$

$$F = \frac{SSA/(r - 1)}{SSE/(N - rc)}$$

- F-statistic has degrees of freedom $r - 1, \ N - rc$.
- $N = \sum_{i=1}^{r} n_i$.
- r (number of rows) is the number of groups for factor A.
- c (number of columns) is the number of groups for factor B.
- μ_i is the mean of group i of factor A.
- SSA is the sum of squares from factor A.
Hypothesis Test for Factor A

- \(H_0 : \mu_1 = \mu_2 = \ldots = \mu_r \).
- \(H_a : \) At least one of the means of the groups in factor A are different from the others.

\[
F = \frac{SSA/(r - 1)}{SSE/(N - rc)}
\]

- F-statistic has degrees of freedom \(r - 1, \ N - rc \).
- \(N = \sum_{i=1}^{r} n_i \).
- \(r \) (number of rows) is the number of groups for factor A.
- \(c \) (number of columns) is the number of groups for factor B.
- \(\mu_i \) is the mean of group \(i \) of factor A.
- SSA is the sum of squares from factor A.
Hypothesis Test for Factor A

- \(H_0 : \mu_1 = \mu_2 = \ldots = \mu_r. \)
- \(H_a : \) At least one of the means of the groups in factor A are different from the others.

\[
F = \frac{SSA/(r-1)}{SSE/(N-rc)}
\]

- F-statistic has degrees of freedom \(r-1, N-rc. \)
- \(N = \sum_{i=1}^{r} n_i. \)
- \(r \) (number of rows) is the number of groups for factor A.
- \(c \) (number of columns) is the number of groups for factor B.
- \(\mu_i. \) is the mean of group \(i \) of factor A.
- SSA is the sum of squares from factor A.
Hypothesis Test for Factor A

- \(H_0 : \mu_1 = \mu_2 = \ldots = \mu_r. \)
- \(H_a : \) At least one of the means of the groups in factor A are different from the others.

\[F = \frac{SSA/(r - 1)}{SSE/(N - rc)} \]

- F-statistic has degrees of freedom \(r - 1, \ N - rc. \)
- \(N = \sum_{i=1}^{r} n_i. \)
 - \(r \) (number of rows) is the number of groups for factor A.
 - \(c \) (number of columns) is the number of groups for factor B.
 - \(\mu_i. \) is the mean of group \(i \) of factor A.
 - SSA is the sum of squares from factor A.
Hypothesis Test for Factor A

- $H_0 : \mu_1. = \mu_2. = \ldots = \mu_r.$
- $H_a : \text{At least one of the means of the groups in factor A are different from the others.}$

$$F = \frac{SSA/(r - 1)}{SSE/(N - rc)}$$

- F-statistic has degrees of freedom $r - 1$, $N - rc$.
- $N = \sum_{i=1}^{r} n_i.$
- r (number of rows) is the number of groups for factor A.
- c (number of columns) is the number of groups for factor B.
- $\mu_i.$ is the mean of group i of factor A.
- SSA is the sum of squares from factor A.
Hypothesis Test for Factor A

- $H_0 : \mu_1 = \mu_2 = \ldots = \mu_r.$
- $H_a : \text{At least one of the means of the groups in factor A are different from the others.}$

$$F = \frac{SSA/(r - 1)}{SSE/(N - rc)}$$

- F-statistic has degrees of freedom $r - 1$, $N - rc$.
- $N = \sum_{i=1}^{r} n_i.$
- r (number of rows) is the number of groups for factor A.
- c (number of columns) is the number of groups for factor B.
- μ_i is the mean of group i of factor A.
- SSA is the sum of squares from factor A.
Hypothesis Test for Factor A

- $H_0 : \mu_1 = \mu_2 = \ldots = \mu_r$.
- $H_a : \text{At least one of the means of the groups in factor A are different from the others.}$

$$F = \frac{SSA/(r - 1)}{SSE/(N - rc)}$$

- F-statistic has degrees of freedom $r - 1, N - rc$.
- $N = \sum_{i=1}^{r} n_i$.
- r (number of rows) is the number of groups for factor A.
- c (number of columns) is the number of groups for factor B.
- μ_i is the mean of group i of factor A.
- SSA is the sum of squares from factor A.
Hypothesis Test for Factor A

- $H_0 : \mu_1 = \mu_2 = ... = \mu_r.$
- $H_a :$ At least one of the means of the groups in factor A are different from the others.

$$F = \frac{SSA/(r-1)}{SSE/(N-rc)}$$

- F-statistic has degrees of freedom $r - 1$, $N - rc$.
- $N = \sum_{i=1}^{r} n_i$.
- r (number of rows) is the number of groups for factor A.
- c (number of columns) is the number of groups for factor B.
- μ_i is the mean of group i of factor A.
- SSA is the sum of squares from factor A.
Hypothesis Test for Factor B

- $H_0 : \mu_1 = \mu_2 = \ldots = \mu_c$
- $H_a : \text{At least one of the means of the groups in factor B are different from the others.}$

$$F = \frac{SSB/(c - 1)}{SSE/(N - rc)}$$

- F-statistic has degrees of freedom $c - 1, N - rc$.
- μ_j is the mean of group j of factor B.
- SSB is the sum of squares from factor B.
Hypothesis Test for Factor B

- $H_0: \mu_1 = \mu_2 = \ldots = \mu_c$
- $H_a: \text{At least one of the means of the groups in factor B are different from the others.}$

$$F = \frac{SSB/(c - 1)}{SSE/(N - rc)}$$

- F-statistic has degrees of freedom $c - 1$, $N - rc$.
- μ_j is the mean of group j of factor B.
- SSB is the sum of squares from factor B.
Hypothesis Test for Factor B

- \(H_0 : \mu_1 = \mu_2 = \ldots = \mu_c \)
- \(H_a : \) At least one of the means of the groups in factor B are different from the others.

\[
F = \frac{SSB/(c - 1)}{SSE/(N - rc)}
\]

- F-statistic has degrees of freedom \(c - 1, N - rc \).
- \(\mu_j \) is the mean of group \(j \) of factor B.
- SSB is the sum of squares from factor B.
Hypothesis Test for Factor B

- $H_0 : \mu_1 = \mu_2 = \ldots = \mu_c$
- $H_a : \text{At least one of the means of the groups in factor B are different from the others.}$

$$F = \frac{SSB/(c - 1)}{SSE/(N - rc)}$$

- F-statistic has degrees of freedom $c - 1, N - rc$.
- μ_j is the mean of group j of factor B.
- SSB is the sum of squares from factor B.
Hypothesis Test for Factor B

- $H_0 : \mu_1 = \mu_2 = \ldots = \mu_c$
- $H_a : \text{At least one of the means of the groups in factor B are different from the others.}$

$$F = \frac{SSB/(c - 1)}{SSE/(N - rc)}$$

- F-statistic has degrees of freedom $c - 1, N - rc$.
- μ_j is the mean of group j of factor B.
- SSB is the sum of squares from factor B.
Hypothesis Test for Factor B

- $H_0 : \mu_1 = \mu_2 = \ldots = \mu_c$
- $H_a : \text{At least one of the means of the groups in factor B are different from the others.}$

$$F = \frac{SSB/(c - 1)}{SSE/(N - rc)}$$

- F-statistic has degrees of freedom $c - 1, N - rc$.
- μ_j is the mean of group j of factor B.
- SSB is the sum of squares from factor B.
Hypothesis Test for Interaction of Factors A and B

- H_0: there is no interaction effect.
- H_a: there is an interaction effect.

$$F = \frac{SSAB/(r - 1)(c - 1)}{SSE/(N - rc)}$$

- F-statistic has degrees of freedom $(r - 1)(c - 1)$, $N - rc$.
- SSAB is the sum of squares from factors A and B.
Hypothesis Test for Interaction of Factors A and B

- H_0: there is no interaction effect.
- H_a: there is an interaction effect.

$$F = \frac{SSAB/(r-1)(c-1)}{SSE/(N-rc)}$$

- F-statistic has degrees of freedom $(r-1)(c-1), N-rc$.
- SSAB is the sum of squares from factors A and B.
Hypothesis Test for Interaction of Factors A and B

- H_0: there is no interaction effect.
- H_a: there is an interaction effect.

$$F = \frac{SSAB/(r - 1)(c - 1)}{SSE/(N - rc)}$$

- F-statistic has degrees of freedom $(r - 1)(c - 1)$, $N - rc$.
- SSAB is the sum of squares from factors A and B.
Hypothesis Test for Interaction of Factors A and B

- H_0: there is no interaction effect.
- H_a: there is an interaction effect.

\[
F = \frac{SSAB/(r - 1)(c - 1)}{SSE/(N - rc)}
\]

- F-statistic has degrees of freedom $(r - 1)(c - 1)$, $N - rc$.
- SSAB is the sum of squares from factors A and B.
Hypothesis Test for Interaction of Factors A and B

- H_0: there is no interaction effect.
- H_a: there is an interaction effect.

$$F = \frac{SSAB/(r-1)(c-1)}{SSE/(N - rc)}$$

- F-statistic has degrees of freedom $(r-1)(c-1), N - rc$.
- SSAB is the sum of squares from factors A and B.
Advise: run two, one-way ANOVA’s using Kruskal-Wallis test.

Or.. run a Kruskal Wallis test with r x c different groups:

- Group 1: Unemployment=1, Schooling=1
- Group 2: Unemployment=2, Schooling=1
- Group 3: Unemployment=3, Schooling=1
- Group 4: Unemployment=1, Schooling=2
- Group 5: Unemployment=2, Schooling=2
- Group 6: Unemployment=3, Schooling=2

The Tukey pairwise tests for these combinations will indicate if there are interaction effects.
Advise: run two, one-way ANOVA’s using Kruskal-Wallis test.

Or... run a Kruskal Wallis test with r x c different groups:

- Group 1: Unemployment=1, Schooling=1
- Group 2: Unemployment=2, Schooling=1
- Group 3: Unemployment=3, Schooling=1
- Group 4: Unemployment=1, Schooling=2
- Group 5: Unemployment=2, Schooling=2
- Group 6: Unemployment=3, Schooling=2

The Tukey pairwise tests for these combinations will indicate if there are interaction effects.
Advise: run two, one-way ANOVA’s using Kruskal-Wallis test.

Or.. run a Kruskal Wallis test with \(r \times c \) different groups:
- Group 1: Unemployment=1, Schooling=1
- Group 2: Unemployment=2, Schooling=1
- Group 3: Unemployment=3, Schooling=1
- Group 4: Unemployment=1, Schooling=2
- Group 5: Unemployment=2, Schooling=2
- Group 6: Unemployment=3, Schooling=2

The Tukey pairwise tests for these combinations will indicate if there are interaction effects.