Measures of Variation in Regression Analysis

MGMT 230: Introductory Statistics
Goals of this section

- Learn in detail how to estimate the relationship between one or more variables.
- Learn how to decompose the variance into variability that is explained and unexplained.
Multiple regression line (population):

\[y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2} + \ldots + \beta_{k-1} x_{k-1} + \epsilon_i \]

Multiple regression line (sample):

\[y_i = b_0 + b_1 x_{1,i} + b_2 x_{2} + \ldots + b_k x_k + e_i \]

- \(k \): number of parameters (coefficients) you are estimating.
- \(\epsilon_i \): error term, since linear relationship between the \(x \) variables and \(y \) are not perfect.
- \(e_i \): residual = the difference between the predicted value \(\hat{y} \) and the actual value \(y_i \).
Multiple regression line (population):

\[y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \ldots + \beta_{k-1} x_{k-1} + \epsilon_i \]

Multiple regression line (sample):

\[y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \ldots + b_k x_k + e_i \]

- \(k \): number of parameters (coefficients) you are estimating.
- \(\epsilon_i \): error term, since linear relationship between the \(x \) variables and \(y \) are not perfect.
- \(e_i \): residual = the difference between the predicted value \(\hat{y} \) and the actual value \(y_i \).
Multiple Regression

- Multiple regression line (population):

\[y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \ldots + \beta_{k-1} x_{k-1} + \epsilon_i \]

- Multiple regression line (sample):

\[y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \ldots + b_k x_k + e_i \]

- \(k \): number of parameters (coefficients) you are estimating.
- \(\epsilon_i \): error term, since linear relationship between the \(x \) variables and \(y \) are not perfect.
- \(e_i \): residual = the difference between the predicted value \(\hat{y} \) and the actual value \(y_i \).
Multiple Regression

- Multiple regression line (population):

\[y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \ldots + \beta_{k-1} x_{k-1} + \epsilon_i \]

- Multiple regression line (sample):

\[y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \ldots + b_k x_k + e_i \]

- \(k \): number of parameters (coefficients) you are estimating.
- \(\epsilon_i \): error term, since linear relationship between the \(x \) variables and \(y \) are not perfect.
- \(e_i \): residual = the difference between the predicted value \(\hat{y} \) and the actual value \(y_i \).
Multiple regression line (population):

\[y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \ldots + \beta_{k-1} x_{k-1} + \epsilon_i \]

Multiple regression line (sample):

\[y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \ldots + b_k x_k + e_i \]

- \(k \): number of parameters (coefficients) you are estimating.
- \(\epsilon_i \): error term, since linear relationship between the \(x \) variables and \(y \) are not perfect.
- \(e_i \): residual = the difference between the predicted value \(\hat{y} \) and the actual value \(y_i \).
Multiple regression line (population):

\[y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \ldots + \beta_{k-1} x_{k-1} + \epsilon_i \]

Multiple regression line (sample):

\[y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \ldots + b_k x_k + e_i \]

- \(k \): number of parameters (coefficients) you are estimating.
- \(\epsilon_i \): error term, since linear relationship between the \(x \) variables and \(y \) are not perfect.
- \(e_i \): residual = the difference between the predicted value \(\hat{y} \) and the actual value \(y_i \).
Multiple regression line (population):

\[y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_2 + \ldots + \beta_{k-1} x_{k-1} + \epsilon_i \]

Multiple regression line (sample):

\[y_i = b_0 + b_1 x_{1,i} + b_2 x_2 + \ldots + b_k x_k + e_i \]

- \(k \): number of parameters (coefficients) you are estimating.
- \(\epsilon_i \): error term, since linear relationship between the \(x \) variables and \(y \) are not perfect.
- \(e_i \): residual = the difference between the predicted value \(\hat{y} \) and the actual value \(y_i \).
Sum of Squares Measures of Variation

- **Sum of Squares Regression (SSR)**: measure of the amount of variability in the dependent (Y) variable that is explained by the independent variables (X’s).

\[SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 \]

- **Sum of Squares Error (SSE)**: measure of the unexplained variability in the dependent variable.

\[SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]
Sum of Squares Measures of Variation

- **Sum of Squares Regression (SSR)**: measure of the amount of variability in the dependent (Y) variable that is explained by the independent variables (X’s).

 \[
 SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2
 \]

- **Sum of Squares Error (SSE)**: measure of the unexplained variability in the dependent variable.

 \[
 SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
 \]
Sum of Squares Measures of Variation

- **Sum of Squares Regression (SSR)**: measure of the amount of variability in the dependent (Y) variable that is explained by the independent variables (X’s).

\[
SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2
\]

- **Sum of Squares Error (SSE)**: measure of the unexplained variability in the dependent variable.

\[
SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
\]
Sum of Squares Measures of Variation

- **Sum of Squares Regression (SSR)**: measure of the amount of variability in the dependent (Y) variable that is explained by the independent variables (X’s).

 \[SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 \]

- **Sum of Squares Error (SSE)**: measure of the unexplained variability in the dependent variable.

 \[SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]
Sum of Squares Total (SST): measure of the total variability in the dependent variable. Does the formula below look familiar?

\[
SST = \sum_{i=1}^{n} (y_i - \bar{y})^2
\]

- \(SST = SSR + SSE. \)
• **Sum of Squares Total (SST):** measure of the total variability in the dependent variable. Does the formula below look familiar?

\[
SST = \sum_{i=1}^{n} (y_i - \bar{y})^2
\]

• \(SST = SSR + SSE\).
• **Sum of Squares Total (SST):** measure of the total variability in the dependent variable. Does the formula below look familiar?

\[SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 \]

• SST = SSR + SSE.
Each measure of variability has its own degrees of freedom.

- Degrees of freedom regression = \(df_R = k - 1 \).
- Degrees of freedom error = \(df_E = n - k \).
- Degrees of freedom total = \(df_T = n - 1 \) (Look familiar?).
Each measure of variability has its own degrees of freedom.

- Degrees of freedom regression = \(df_R = k - 1 \).
- Degrees of freedom error = \(df_E = n - k \).
- Degrees of freedom total = \(df_T = n - 1 \) (Look familiar?).
Each measure of variability has its own degrees of freedom.

- Degrees of freedom regression = \(df_R = k - 1 \).
- Degrees of freedom error = \(df_E = n - k \).
- Degrees of freedom total = \(df_T = n - 1 \) (Look familiar?).
Each measure of variability has its own degrees of freedom.

- Degrees of freedom regression = $df_R = k - 1$.
- Degrees of freedom error = $df_E = n - k$.
- Degrees of freedom total = $df_T = n - 1$ (Look familiar?).
Mean Squared Measures of Variation

- **Mean Squared Regression (MSR):** Measure of the average amount unexplained variability in the dependent variable. of variability in the dependent (Y) variable that is explained by the independent variables (X’s).
 \[MSR = \frac{SSR}{df_R} \]

- **Mean Squared Error (MSE):** Measure of the average amount of unexplained variability in the dependent variable.
 \[MSE = \frac{SSE}{df_E} \]

- No textbook ever talks about a mean squared total, what do you think this would equal?
Mean Squared Measures of Variation

- **Mean Squared Regression (MSR):** Measure of the average amount unexplained variability in the dependent variable. of variability in the dependent (Y) variable that is explained by the independent variables (X’s).

\[MSR = \frac{SSR}{df_R} \]

- **Mean Squared Error (MSE):** Measure of the average amount of unexplained variability in the dependent variable.

\[MSE = \frac{SSE}{df_E} \]

- No textbook ever talks about a mean squared total, what do you think this would equal?
Mean Squared Measures of Variation

- **Mean Squared Regression (MSR):** Measure of the average amount unexplained variability in the dependent variable. of variability in the dependent (Y) variable that is explained by the independent variables (X’s).

\[MSR = \frac{SSR}{df_R} \]

- **Mean Squared Error (MSE):** Measure of the average amount of unexplained variability in the dependent variable.

\[MSE = \frac{SSE}{df_E} \]

- No textbook ever talks about a mean squared total, what do you think this would equal?
Mean Squared Measures of Variation

- **Mean Squared Regression (MSR):** Measure of the average amount unexplained variability in the dependent variable. of variability in the dependent (Y) variable that is explained by the independent variables (X’s).

\[
MSR = \frac{SSR}{df_R}
\]

- **Mean Squared Error (MSE):** Measure of the average amount of unexplained variability in the dependent variable.

\[
MSE = \frac{SSE}{df_E}
\]

- No textbook ever talks about a mean squared total, what do you think this would equal?
Mean Squared Measures of Variation

- **Mean Squared Regression (MSR):** Measure of the average amount unexplained variability in the dependent variable. of variability in the dependent (Y) variable that is explained by the independent variables (X’s).

 \[MSR = \frac{SSR}{df_R} \]

- **Mean Squared Error (MSE):** Measure of the average amount of unexplained variability in the dependent variable.

 \[MSE = \frac{SSE}{df_E} \]

- No textbook ever talks about a mean squared total, what do you think this would equal?
The **coefficient of determination** is the percentage of variability in y that is explained by x.

\[R^2 = \frac{SSR}{SST} \]

- This *is not the same* as the correlation coefficient.
- In the case of single variable regression, actually equal to the square of the correlation coefficient.
- R^2 will always be between 0 and 1.
- The closer R^2 is to 1, the better x is able to explain y.
The coefficient of determination is the percentage of variability in y that is explained by x.

$$R^2 = \frac{SSR}{SST}$$

This is not the same as the correlation coefficient.

In the case of single variable regression, actually equal to the square of the correlation coefficient.

R^2 will always be between 0 and 1.

The closer R^2 is to 1, the better x is able to explain y.
The **coefficient of determination** is the percentage of variability in \(y \) that is explained by \(x \).

\[
R^2 = \frac{SSR}{SST}
\]

This *is not the same* as the correlation coefficient.

In the case of single variable regression, actually equal to the square of the correlation coefficient.

\(R^2 \) will always be between 0 and 1.

The closer \(R^2 \) is to 1, the better \(x \) is able to explain \(y \).
The **coefficient of determination** is the percentage of variability in y that is explained by x.

$$R^2 = \frac{SSR}{SST}$$

- This *is not the same* as the correlation coefficient.
- In the case of single variable regression, actually equal to the square of the correlation coefficient.
- R^2 will always be between 0 and 1.
- The closer R^2 is to 1, the better x is able to explain y.
The **coefficient of determination** is the percentage of variability in \(y \) that is explained by \(x \).

\[R^2 = \frac{SSR}{SST} \]

- This *is not the same* as the correlation coefficient.
- In the case of single variable regression, actually equal to the square of the correlation coefficient.
- \(R^2 \) will always be between 0 and 1.
- The closer \(R^2 \) is to 1, the better \(x \) is able to explain \(y \).
The coefficient of determination is the percentage of variability in y that is explained by x.

$$R^2 = \frac{SSR}{SST}$$

This is not the same as the correlation coefficient.

In the case of single variable regression, actually equal to the square of the correlation coefficient.

R^2 will always be between 0 and 1.

The closer R^2 is to 1, the better x is able to explain y.
The more variables you add to the regression, the higher R^2 will be.

Adding new variables is not necessarily good, when the new variables have nothing to do with the dependent variable.

The Adjusted R^2 penalizes additional variables.

\[
R^2_{\text{adj}} = 1 - \frac{n - 1}{n - k - 1} \left(1 - R^2\right)
\]

When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.

When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.
The more variables you add to the regression, the higher R^2 will be.

Adding new variables is not necessarily good, when the new variables have nothing to do with the dependent variable.

The Adjusted R^2 penalizes additional variables.

$$R^2_{adj} = 1 - \frac{n - 1}{n - k - 1} (1 - R^2)$$

When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.

When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.
Adjusted R^2

- The more variables you add to the regression, the higher R^2 will be.
- Adding new variables is not necessarily good, when the new variables have nothing to do with the dependent variable.
- The Adjusted R^2 penalizes additional variables.

$$R^2_{adj} = 1 - \frac{n - 1}{n - k - 1} (1 - R^2)$$

- When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.
- When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.
Adjusted R^2

- The more variables you add to the regression, the higher R^2 will be.
- Adding new variables is not necessarily good, when the new variables have nothing to do with the dependent variable.
- The Adjusted R^2 penalizes additional variables.

$$R^2_{adj} = 1 - \frac{n - 1}{n - k - 1} (1 - R^2)$$

- When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.
- When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.
Adjusted R^2

- The more variables you add to the regression, the higher R^2 will be.
- Adding new variables is not necessarily good, when the new variables have nothing to do with the dependent variable.
- The Adjusted R^2 penalizes additional variables.

$$R^2_{adj} = 1 - \frac{n - 1}{n - k - 1} (1 - R^2)$$

- When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.
- When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.
Adjusted R^2

- The more variables you add to the regression, the higher R^2 will be.
- Adding new variables is not necessarily good, when the new variables have nothing to do with the dependent variable.
- The Adjusted R^2 penalizes additional variables.

$$R^2_{adj} = 1 - \frac{n - 1}{n - k - 1} (1 - R^2)$$

- When the adjusted R^2 increases when adding a variable, then the additional variable really did help explain the dependent variable.
- When the adjusted R^2 decreases when adding a variable, then the additional variable does not help explain the dependent variable.
Problems computing regression:

Computing Coefficient of determination.
 - Section 13.3, pages 528-529, problems 13.16 through 13.19.