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Abstract

This paper examines the empirical signi�cance of learning, a type of adaptive,

boundedly rational expectations, in the U.S. economy within the framework of the

New Keynesian model with endogenous capital accumulation. Estimation results for

learning models can be sensitive to the choice for agents' initial expectations, so three

methods for choosing initial expectations are examined. Maximum likelihood results

show that learning under all methods do not signi�cantly improve the �t the model.

The evolution of forecast errors show that the learning models do not out perform

the rational expectations model during the run-up of in�ation in the 1970s and the

subsequent decline in the 1980s, a period of U.S. history which others have suggested

learning may play a role. Despite the failure of learning models to better explain the

data, analysis of the impulse response functions and paths of structural shocks during

the sample show that learning can lead to di�erent explanations for the data.
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1 Introduction

Rational expectations is one of the most common assumptions in dynamic macroeconomic

models. While it is usually made for mathematical convenience, the assumption regarding

expectations formation can have non-trivial e�ects on a model's dynamics. In particular, a

large amount of literature has addressed the implications of least squares learning for popular

dynamic stochastic general equilibrium (DSGE) models. Agents in a DSGE model that learn

do not know the parameters of the model, and instead form expectations by collecting past

data and compute least squares forecasts. In this paper I investigate statistical evidence

for learning within the framework of a New Keynesian monetary model and examine the

implications of incorporating learning on the predictions of the model

Recent papers have found that least squares learning can have important e�ects on out-

put and in�ation determination. Orphanides and Williams (2005b) use an estimated two

equation monetary model and demonstrate with simulations of impulse response functions

that least squares learning can lead to prolonged in�ation following an in�ation shock. Using

the same model, Orphanides and Williams (2005a) �nd in another paper that learning on

the part of monetary policy can possibly explain the period of stag�ation during the 1970s.

They suggest that the monetary authority was under-estimating the natural rate of unem-

ployment during this time, and was therefore responding too aggressively to unemployment

and not enough to in�ation. They suggest that had the central bank responded to in�ation

instead of unemployment, lower in�ation and unemployment would have resulted. Primiceri

(2006) suggests that learning on the part of the central bank can explain both the run-up of

in�ation during the 1970s and the subsequent decline during the 1980s. He suggests that the

monetary authority was under-estimating both the natural rate of unemployment and the

degree of in�ation persistence. Like Orphanides and Williams (2005a), he shows the resulting

monetary policy leads to an increase in in�ation, but as time progresses the central bank's

expectations evolve. The central bank's expectations of the natural rate of unemployment

and the degree of in�ation persistence return their actual values and therefore the policy

prescription becomes stabilizing, resulting in the moderation that occurred from the middle
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1980s onward.

The results from these papers depend on a calibrated value for the constant learning gain,

a parameter that is responsible for the speed in which expectations evolve, and therefore

responsible for the impact learning can have on the dynamics of the model. Milani (2007)

is the �rst paper to estimate the learning gain jointly with the parameters of a model. He

�nds an estimate for the learning gain which is very close to calibrated values that are

popular in the literature. He estimates a standard three equation New Keynesian model and

�nds evidence in U.S. data that learning explains persistence in output and in�ation better

than habit formation and in�ation indexation. Like the papers cited above, Milani makes

speci�c assumptions about the initial conditions of agents expectations. Many of the initial

conditions are set close to pre-sample ordinary least squares estimates. The exceptions are

the degree of in�ation persistence, which he assumes is equal to zero, and the sensitivity of

output to in�ation, which he assumes is higher than the pre-sample evidence.

The results of all of these studies depend on the assumptions for the initial conditions for

agents and/or central bank's expectations. These initial conditions are sometimes backed

by an economic justi�cation or an argument that such a set of initial conditions accounts

well for the data. In this paper, instead of suggesting a speci�c assumption for the initial

expectations of agents, I examine a number of alternative methods for forming these initial

conditions. These methods include using the rational expectations solution of the model and

using least-squares estimation results from pre-sample data.

I extend the analysis of the existing empirical learning literature, and incorporate learning

into a New Keynesian model with �rm-speci�c capital and endogenous investment decisions,

a model introduced by Woodford (2005). There are a number of motivations for extending

the empirical analysis to the model with capital accumulation. Including capital in the model

introduces data on another variable, aggregate investment, to be included in the estimation

procedure. Secondly, introducing capital may alter how expectations are formed, since agents

may use past data on capital to make their forecasts. Also, incorporating capital introduces

more expectations into the model which may allow learning may play a bigger role. Finally,
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in a rich model with stochastic shocks to preferences, technology, and investment, one can

determine the role learning has on the impact of such shocks, and the role the shocks play

in explaining U.S. data.

Rational expectations and learning versions of the model are estimated by maximum

likelihood. The �ndings of this paper indicate the learning gain is statistically signi�cant

which implies rejection of the null hypothesis of rational expectations and statistical evidence

that expectations are adaptive. Examination of the other parameter estimates indicate that

allowing for learning in the model can lead agents' consumption and investment decisions

to be less dependent on expectations. Furthermore, estimated impulse response functions

indicate that learning can lead to very di�erent e�ects for the structural shocks depending on

the information agents use for forming their forecasts and depending on the initial conditions

for agents expectations at the beginning of the sample period. Despite these di�erences,

examination of in-sample and out-of-sample forecast errors �nd that the learning models do

not out-perform the rational expectations model in explaining the data.

The paper is organized as follows. Section 2 describes the details of the New Keynesian

model with �rm-speci�c capital. Section 3 describes the learning process and how learning

is incorporated into the model. Section 4 describes the maximum likelihood procedure and

the four cases for how initial conditions are constructed. Section 5 reports the results, and

section 6 concludes.

2 Model

The New Keynesian model has been used extensively in monetary economics for analysis

of theoretical and empirical issues and it is a convenient framework to examine the role of

learning on output, consumption, investment, and in�ation determination. Woodford (2003)

provides a complete exposition of the model's micro-foundations, its many extensions, and

implications for monetary policy. The model used in this paper is an extension of the

standard three equation New Keynesian suggested by Woodford (2005) that incorporates
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endogenous investment decisions in a framework of �rm-speci�c capital, where output is

produced under constant returns using labor and �rm-speci�c capital. Not only is �rm-

speci�c capital a more realistic assumption than a perfect rental market for capital, Woodford

shows that allowing for �rm-speci�c capital alters the coe�cient on marginal cost in the

Phillips curve in such a way that allows for greater price �exibility to be consistent with very

small values of the coe�cient, which is often seen in empirical work.

The model has a continuum of consumers types on the unit interval, and a continuum

of intermediate goods producers on the unit interval, each producing a unique intermediate

good. Each consumer type possesses a speci�c labor skill that can only be hired by a corre-

sponding intermediate goods producer. It is assumed that there are many consumers in each

consumer type so that consumers do not have market power over the wage. Production of

intermediate goods also depend on capital goods which are �rm-speci�c. Since a capital good

in �rm i cannot be used by another �rm j, there is not a perfect capital rental market which

would equalize the marginal product of capital across intermediate goods �rms. Therefore

each �rm's labor demand and pricing decision will depend on its current capital stock, which

in turn depends on the �rm's entire past history.

All the intermediate goods are used to produce a single type of �nal good, but they are

imperfect substitutes for each other in production; therefore intermediate goods producing

�rms are monopolistically competitive. Prices of intermediate goods are imperfectly �exible

according to Calvo's (1983) pricing mechanism where a constant fraction of �rms is able to

re-optimize its price every period, and the �rms selected to do so is randomly determined,

independently of �rms' histories or characteristics. This setup for sticky prices may seem

unrealistic, but Roberts (1995) shows in a model without �rm-speci�c capital that quadratic

price adjustment cost, an alternative pricing friction suggested by Rotemberg (1982), yields

the same solution as Calvo pricing. The same is not true with �rm-speci�c capital. Under

Calvo pricing, at any point in time, each �rm will have a di�erent pricing history and there-

fore a di�erent capital stock. Each �rm's relative capital stock will in turn a�ect the pricing

decision. Under quadratic price adjustment costs, all �rms face the same friction every pe-
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riod, and so all �rms' price, labor, and investment decisions remain identical throughout

time. Therefore, even though Calvo pricing may seem to be an unrealistic setting, it is a

convenient framework to incorporate the realistic assumption of �rm heterogeneity.

2.1 Consumers

Each consumer type has a speci�c labor skill that can only be hired by a speci�c intermediate

goods producing �rm. Since each intermediate goods �rm has a di�erent labor demand,

wage income will be di�erent for each consumer type. Given a perfect asset market, though,

consumption will be equal across all consumers. Each consumer type i ∈ (0, 1) maximizes

utility,

E0

∞∑
t=0

βt
[

1

1− 1
σ

ξt (ct − ηct−1)
1− 1

σ − 1

1 + µ
µtnt(i)

1+µ

]
, (1)

subject to the budget constraint,

ct + bt(i) =
1 + rt−1

1 + πt
bt−1(i) +

wt(i)

pt
nt(i) + Πt − τt (2)

where ct, consumption at time t, is not indexed by individual type i since it is equal across

all agents, ξt is an aggregate preference shock, nt(i) and wt(i)/pt are the labor supply and

real wage of individual i at time t, respectively, µt is an aggregate labor supply shock, bt(i)

is individual i's purchase of real government bonds at time t, rt is the nominal interest rate

paid on government bonds, πt is the in�ation rate, Πt is the value of pro�ts earned by owning

stock in �rms, and τt is the value of real lump sum taxes. The preference parameters are

σ ∈ (0,∞), which is the pseudo intertemporal-elasticity of substitution,1 η ∈ [0, 1), which is

the degree of habit formation, and µ ∈ (0,∞) which is the inverse of the elasticity of labor

supply. The appendix shows that the �rst order conditions for the consumer lead to the

log-linear Euler equation,

λ̂t = Etλ̂t+1 + r̂t − Etπt+1, (3)

1When there is no habit formation and labor supply is �xed, σ is exactly equal to the intertemporal
elasticity of substitution.
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where a hat indicates the percentage deviation of the variable from its steady state.2 Here,

λ̂t is the marginal utility of real income, given by,

λ̂t =
1

σ(1− βη)(1− η)

[
βηEtĉt+1 − (1 + βη2)ĉt + ηĉt−1

]
+
(
ξ̂t − βηEtξ̂t+1

)
. (4)

I assume that the preference shock, ξ̂t, follows the exogenous autoregressive process,

ξ̂t = ρξ ξ̂t−1 + εξ,t, (5)

where εξ,t is independently and identically with mean zero and variance given by σ2
ξ .

When there is no habit formation, equations (3) and (4) lead to the standard IS equation,

ĉt = Etĉt+1 − σ (r̂t − Etπt+1) + ξ̂t.

Habit formation is added to the model, because as equation (4) demonstrates, habit for-

mation introduces a source of persistence that does not depend on learning. The larger is

the degree of habit formation, the more current period marginal utility depends on past

consumption. Since consumption is related to output in the market clearing condition, habit

formation creates output persistence. Moreover, Fuhrer (2000) �nds that habit formation

leads to �hump shaped� impulse response functions, a phenomenon evident in the data.

2.2 Producers

There is one �nal good used for consumption and investment which is sold in a perfectly

competitive market and produced with a continuum of intermediate goods. The production

function is given by,

yt =
[∫ 1

0
yt(i)

θ−1
θ di

] θ
θ−1

(6)

2A hat is omitted from in�ation because, as demonstrated in the appendix, in order to derive the Phillips
curve it is necessary to assume the steady state in�ation rate is equal to zero.
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where yt is the output of the �nal good, yt(i) is intermediate good i, and θ ∈ (1,∞) is the

elasticity of substitution in production. Pro�t maximization leads to the demand for each

intermediate good,

yt(i) =

[
pt(i)

pt

]−θ
yt, (7)

where pt(i) is the price of intermediate good i and pt is the price of the �nal good. Substi-

tuting equation (7) into (6) leads to a consumption price index that holds in equilibrium,

pt =
[∫ 1

0
pt(i)

1−θdi
] 1

1−θ
. (8)

2.2.1 Intermediate goods

The intermediate good is produced with labor and a unique type of capital good according

to the constant returns to scale production function,

yt(i) = ztkt(i)
αnt(i)

1−α (9)

where kt(i) is capital hired by �rm i. For a given level of output, intermediate goods �rms

choose labor demand and rent capital to minimize real total cost,

Ct =
wt(i)

pt
nt(i) + ρt(i)kt(i), (10)

where ρt(i) is the rental price of capital good i. Log-linearizing the production function

and summing over all intermediate goods �rms leads to the log-linear aggregate production

function,

ŷt = ẑt + αk̂t + (1− α)n̂t. (11)

The appendix shows when �rms hire optimal amounts of labor and capital, the average

marginal cost among all the intermediate goods �rms (in terms of the percentage deviation
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from the steady state) is given by,

ŝt =
α + µ

1− α
ŷt −

α(µ+ 1)

1− α
k̂t − λ̂t −

µ+ 1

1− α
ẑt, (12)

where k̂t is the percentage deviation of the aggregate capital stock from its steady state. The

technology shock is assumed to follow the exogenous stochastic process,

ẑt = ρz ẑt−1 + εz,t, (13)

where εz,t is independently and identically distributed with mean zero and variance given by

σ2
z .

2.2.2 Firm-speci�c capital goods

Capital goods �rms maintain �rm-speci�c capital stocks and rent the capital to the corre-

sponding intermediate goods �rm at a real price of ρt(i) per unit of capital. This assumption

in not essential and is purely used for notational convenience. This model supposes that

the market for �rm-speci�c capital is purely competitive, even though �rm-speci�c capital

cannot be sold to other �rms. This assumption assures an optimal amount of investment in

each �rm-speci�c capital good which would be the same outcome if the intermediate goods

�rms were to invest and own the capital themselves instead of renting it.

Capital goods �rms purchase the �nal good and convert it to a �rm-speci�c capital good.

The conversion from a �nal good to a �rm-speci�c capital good is irreversible and is subject

to a stochastic shock, ιt, that is common to all capital goods. Let It(i) denote the purchase

of the �nal good for investment for capital good i, so that ιtIt(i) be the amount a purchase

of It(i) adds to the capital stock. The evolution of �rm-speci�c capital i is given as,

kt+1(i) = (1− δ)kt(i) + ιtIt(i)−
φ

2

[
kt+1(i)

kt(i)
− 1

]2

kt(i) (14)

where δ ∈ (0, 1) is the capital depreciation rate and φ ∈ (0,∞) is a capital adjustment
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cost parameter. When φ = 0, there is no adjustment cost and capital net of depreciation

increases by ιtIt(i). Log-linearizing equation (14) then integrating across all the �rms leads

to the following relationship between capital and investment:

k̂t+1 = (1− δ)k̂t + δÎt + δι̂t (15)

Capital goods �rms choose investment to maximize the expected utility value of pro�ts,

E0

∞∑
t=0

βtλt [ρt(i)kt(i)− It(i)] , (16)

subject to equation (14). The appendix shows that pro�t maximization leads to the following

evolution of the aggregate capital stock:

λ̂t + φ
(
k̂t+1 − k̂t

)
= β(1− δ)Etλ̂t+1 +

(
1− β (1− δ)

1− α

) [
(µ+ 1)Etŷt+1 − (1 + µα)k̂t+1

]

+βφ
(
Etk̂t+2 − k̂t+1

)
− (µ+ 1) [1− β (1− δ)]

1− α
Etẑt+1 + ι̂t − β(1− δ)Etι̂t+1

+ [1− β(1− δ)]Etµ̂t+1,

(17)

The investment shock is assumed to follow the stochastic process,

ι̂t = ριι̂t−1 + ει,t (18)

where ει,t is independently and identically distributed with mean zero and variance given by

σ2
ι .

2.2.3 Phillips Curve

The Phillips curve is a single equation that describes the relationship between in�ation and

output, as determined by the supply side of the economy when prices are sticky. The speci�c

price friction employed in this paper is Calvo (1983) pricing. According to this method, only
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a random subset of intermediate goods �rms are able to re-optimize their price in a given

period. Allowing for in�ation indexation, those �rms who are not able to re-optimize their

price may adjust their price by a fraction, γ, of the previous period's in�ation rate. Let

ω ∈ (0, 1) denote the fraction of �rms who are not able to change their prices each period.

Since the speci�c �rms able to change their prices each period is randomly determined, ωT

is the probability a �rm will not be able to change its price for T consecutive periods. A

�rm who is able to change its price maximizes the following present discounted utility value

of pro�ts earned while the �rm is unable to change its price again:

Et
∞∑
T=0

(ωβ)T
λt+T
λt

{(
pt+T (i)

pt+T

)
yt+T (i)− S [yt+T (i)]

}
, (19)

where S [yt+T (i)] is the real total cost function of producing yt+T (i) units, given optimal

decisions for labor and capital, and pt+T (i) is the �rm's price in period t+ T , given the �rm

has not yet been able to re-optimize its price. When there is a positive degree of in�ation

indexation, this price is determined by,

log pt+T (i) = log pt+T−1(i) + γπt+T−1 (20)

The appendix shows that the �rms' optimal choices for prices in combination with equi-

librium in the �rm-speci�c capital goods market leads to the following Phillips curve,

πt =

(
1

1 + βγ

)
(γπt−1 + βEtπt+1 + κŝt) (21)

where κ decreases as ω, the degree of price stickiness, increases. The parameter κ is also a

function of other parameters of the model, but there is not a closed form expression for it.

The appendix describes the full details of the derivation of the Phillips curve.
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2.2.4 Monetary Policy

The nominal interest rate is determined jointly with output and in�ation by monetary policy.

In this paper I assume the monetary authority follows a Taylor (1993) type rule where the

interest rate is set in response to expected output and in�ation, with a preference for interest

rate smoothing, according to,

r̂t = ρrr̂t−1 + (1− ρr) (ψπEtπt+1 + ψyEtŷt+1) + εr,t (22)

where ρr ∈ [0, 1) is a degree of interest rate smoothing desired by the monetary authority,

ψπ ∈ (0,∞) is the feedback on the interest rate to expected in�ation, ψy ∈ (0,∞) is the

feedback on the interest rate to expected output, and εr,t is an independently and identically

distributed exogenous monetary policy shock with mean zero and variance given by σ2
r .

Alternative policy rules may replace expected in�ation and output with current or lagged

realizations. McCallum (1997), for example, argues that a policy rule that depends on cur-

rent realizations of output and in�ation is not operational. He suggests that using lagged

realizations more accurately represent actual monetary policy since current quarter esti-

mates for output and price levels are not available. Under rational expectations with full

information, the policy rule above is also subject to this criticism. However, as will be seen

in the next section, under learning expectations are formed by collecting past data, so the

monetary policy rule above is operational.

2.3 Complete Model

The complete system has nine variables: consumption (ĉt), marginal utility of income (λ̂t),

investment (Ît), capital stock (k̂t), marginal cost (ŝt), output (ŷt), labor (n̂t), in�ation (πt),

and the interest rate (r̂t). The demand side of the model consists of the Euler equation,

(3), and the de�nition of the marginal utility of income, (4). The supply side of the model

consists of the Phillips curve, (21), the de�nition of the marginal cost, (12), the evolution

of capital, (17), the relationship between investment and capital, (15), and the production
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function (11). The model is completed with the monetary policy rule, (22), and the following

log-linear goods market clearing condition,

ŷt = cy ĉt + δky Ît, (23)

where cy is the steady state consumption to output ratio and ky is the steady state capital

to output ratio. The appendix shows that ky and cy are given by,

ky =
βα(θ − 1)

θ (1− β + βδ)
,

cy = 1− δky.

There are �ve exogenous shocks in the model: the preference shock, ξt, whose evolution

is given in equation (5); the technology shock, zt, whose evolution is given in equation (13);

the investment shock, ιt, whose evolution is given in equation (18); the labor supply shock,

µt, and the monetary policy shock, εr,t.

3 Learning

The speci�c type of adaptive learning process considered in this paper is least squares learn-

ing. Under least squares learning, agents form expectations by collecting past data and

computing least squares estimates. The speci�c type of least squares learning I use is con-

stant gain learning, which is consistent with agents' forecasts based on weighted least squares,

where more recent observations are given more weight, and the weights decline geometrically

with the age of the observations. This is a popular assumption in the learning literature and

is the same type of learning used by Orphanides and Williams (2005b) to explain in�ation

scares, Primiceri (2006) to explain the in�ation volatility in the 1970s, and Milani (2007) to

explain output and in�ation persistence.

Constant gain least squares learning is arguably similar to how expectations are actually

formed in the U.S economy. Least squares forecasts out-perform more complex economic
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models in out-of-sample forecasts, and the welfare of individuals who make output, con-

sumption, and savings decisions depend on the accuracy of forecasts and not the ability to

identify parameters of an econometric model, or the ability to make counter-factual predic-

tions. These latter qualities, found in structural economic models, are desirable mostly by

policy makers. The constant gain assumption can also be argued as realistic as it captures

the idea that agents agents believe changes in the economy are possible, so that agents view

more recent data as more likely to yield accurate forecasts than data from further in the past.

I demonstrate in the next section that constant gain least squares is equivalent to a very

speci�c type of weighted least squares which is not an actual popular estimation method.

However, Evans and Honkapohja (2001) suggest that constant gain least squares is a good

approximation for agents that use a �rolling window� of data. That is, agents do not use

all the data as far back as possible, but form forecasts based on the most recent data for a

given number of observations. This is very close to common practice, as empirical studies

that forecast output and in�ation typically use at most 50 years of data, despite annual data

available from Johnston and Williamson (2007) for both these variables dating all they way

back to the year 1790.

There is also a theoretical and empirical appeal to using constant gain learning. The

theoretical appeal is that unlike with ordinary least squares, with weighted least squares the

e�ects of learning persist in the long run. With ordinary least squares, as time progresses

agents obtain more and more observations and so their sample sizes approach in�nity. There-

fore, the e�ect a single new observation has on the agents' estimation results disappears.

Constant gain learning instead assumes that a new observation carries the same weight ev-

ery period, regardless of how much time has progressed. The empirical appeal is that the

degree to which learning a�ects the dynamics of the economy can be determined by estimat-

ing a single parameter, the learning gain. Moreover, with appropriate initial conditions for

the learning process, constant gain learning nests the rational expectations framework, where

rational expectations is the special case where the learning gain is equal to zero. Standard

statistical tests that determine if a parameter is signi�cantly di�erent from zero can deter-
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mine the statistical signi�cance of learning, and formally reject or fail to reject the rational

expectations hypothesis.

The log-linearized New Keynesian model in the previous section has the following general

form:

Ω0xt = Ω1xt−1 + Ω2E
∗
t xt+1 + Ψvt, (24)

vt = Avt−1 + εt (25)

where xt is a vector of state variables (expressed as percentage deviations from their steady

state), E∗t refers to a possibly non-rational expectations operator, vt is a vector of structural

shocks, and εt is a vector of independently and identically distributed innovations to the shock

process. In the New Keynesian model with �rm-speci�c capital the state vector is given by,

x′t = [ŷt ĉt k̂t λ̂t Ît n̂t ŝt πt r̂t], and the vector of shocks is given by, vt = [ẑt ι̂t ξ̂t µ̂t εr,t]

The solution of the model can be written as,

xt = Gxt−1 +Hvt. (26)

To agents that learn with a correctly speci�ed model, the actual values in the matrices G and

H are unknown, but agents use the form of equation (26) to estimate future values of xt by

least squares. It is assumed that when agents begin period t, time t observations are not yet

realized; therefore agents collect observations up through time period t−1. From this agents

make least squares forecast, then make consumption, production, investment, and pricing

decisions based on these expectations. Only after these decisions are implemented, that is

at the end of time period t, do time t observations become available. This is both a realistic

and mathematically simplifying assumption. The latest numbers from statistical agencies

such as the Bureau of Labor Statistics are almost always at least one quarter old. It is of

great mathematical convenience, because the term E∗t xt+1 in equation (24) is then only a

function of observations through period t−1. Therefore, solving for xt in terms of past state

variables is straightforward. If instead E∗t xt+1 was a function of xt, non-linear numerical

methods would be needed to solve the model as least squares forecasts are non-linear.
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To forecast xt+1, agents estimate G and H by least squares using as regressors variables

in the vector xt−1, and the shocks included in vt. Assuming agents have data available on

shocks is not very realistic, but this assumption can be dropped. In Section 4 I estimate the

models under both cases, so that when comparing the results from the learning and rational

expectations models, it will be clear what results derive from the learning process, and what

results derive from assuming that agents have a more limited information set.

Agents do not use all the variables in xt as regressors, only those that correspond to

non-zero columns in G. If an entire column in G is equal to zero, this implies that the past

observation in the associated element in xt−1 does not in�uence xt in the rational expectations

solution. I assume agents know the structural form of the economy and therefore use as

explanatory variables only the variables that have non-zero coe�cients in G. In the New

Keynesian model, the variables with non-zero coe�cients in G include consumption, capital,

the in�ation rate, and the interest rate. The remaining variables in the model that are not

used as explanatory variables are output, labor, marginal cost, marginal utility of income,

and investment.

I assume agents also use a constant term in their least squares forecasts. The structural

form of the model, (24), does not include a constant, but since this equation is written in

terms of percentage deviations from the steady state, using a constant in agents' estimation

equations implies agents do not know the steady state values of the economy.

Let Φt denote the time t estimate of the all the coe�cients to be estimated in the learning

process. These coe�cients include a vector of constants, the non-zero columns in G, and all

the columns in H in the case where shocks are used as explanatory variables. Let Yt denote

the time t dependent variables used in the learning process. Since time t data is not available

to agents, Yt = xt−1. Let Xt denote the vector of time t explanatory variables. If agents

include the stochastic shocks in their explanatory variables, X ′t = [1 x′t−2 v
′
t−1], otherwise

X ′t = [1 x′t−2]. If agents estimate equation (26) by ordinary least squares, they form the

estimate,

Φ′t =

(
1

t− 1

t∑
τ=2

XτX
′
τ

)−1 (
1

t− 1

t∑
τ=2

XτY
′
τ

)
. (27)



Empirical Signi�cance of Learning with Firm-Speci�c Capital 16

The ordinary least squares estimate Φt can be rewritten into the convenient recursive

form:

Φt = Φt−1 + gt(Yt − Φt−1Xt)X
′
tR
−1
t , (28)

Rt = Rt−1 + gt(XtX
′
t −Rt−1), (29)

where gt = 1/(t − 1) is the learning gain.3 The recursive form demonstrates precisely how

expectations are adaptive. Agents take the previous period's estimates, Φt−1 and Rt−1, and

correct them according to the residual between the previous period's forecast and the new

observation. The amount of the correction depends on the learning gain. With ordinary

least squares and in�nite memory, the learning gain approaches zero as time approaches

in�nity, so the e�ect new observations have on updating the beliefs of Φ and R diminish

as the number of observations already in the sample approaches in�nity. Constant gain

learning instead assumes that the learning gain gt remains constant over time. This allows

new observations to in�uence estimation results by the same weight throughout time. If the

constant gain is equal to zero, the estimate Φt remains at its initial value throughout time.

Given an initial value equal to the rational expectations solution, a zero constant learning

gain implies rational expectations.

Let ĝ0,t denote the estimated constant term in Φt, and let Ĝt and Ĥt denote the time t

estimate of G and H, respectively, obtained from Φt. Agents' expectation of xt+1 is given

by,

E∗t xt+1 = ĝ0,t + ĜtE
∗
t xt + ĤEtvt+1 (30)

Note that equation (30) assumes that expectations about future shocks, vt+1, are rational.

This is a common simplifying assumption made in learning models. It is possible to allow

agents to also estimate the coe�cients in the shock process, but the dynamics deriving from

this additional complication are negligible. Since time t observations are not yet available to

3To show this, let Rt = 1
t−1

∑t
τ=2XτX

′
τ and Φ′ = R−1

t

(
1
t−1

∑t
τ=2XτY

′
τ

)
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agents, agents must also estimate xt by least squares. The time t estimate of xt is given by,

Etx
∗
t = ĝ0,t + Ĝtxt−1 + Ĥtvt. (31)

Plugging this into equation (30) yields,

E∗t xt+1 = (I + Ĝt)ĝ0,t + Ĝ2
txt−1 +

(
ĜtĤt + ĤtA

)
vt. (32)

Plugging the agents' forecast, (32), into the structural form of the model, (24), leads to

the following actual law of motion for xt:

xt = Ω−1
0 Ω2

(
I + Ĝt

)
ĝ0,t + Ω−1

0

(
Ω1 + Ω2Ĝ

2
t

)
xt−1 + Ω−1

0

[
Ψ + Ω2

(
ĜtĤt + ĤtA

)]
vt. (33)

4 Estimation

4.1 Data

I estimate the model with quarterly U.S. data on real private consumption, real gross private

domestic investment, consumer price index in�ation, and the e�ective federal funds rate.

Data is collected for 1970:Q1 through 2008:Q1 from the Federal Reserve Bank of St. Louis

FRED database. Consumption and investment are put in per-capita terms by dividing the

series by data on the civilian non-institutional population which is obtained from the Bureau

of Labor Statistics.

In the New Keynesian model, consumption and investment are expressed in terms of the

percentage deviation from their respective steady states. Since this data is non-stationary it

is �rst de-trended by removing a common trend growth rate, similar to Ireland 2004a and

2004b. Even though productivity growth is not speci�ed in the model, consumption and

investment should have the same long run growth rate. This growth rate is determined by

adding together consumption and investment, and taking the average growth rate over the

sample. The average quarterly growth rate of output computed this way is gy = 0.0054.
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De-trended consumption and investment is therefore determined according to,

CONS∗t =
CONSt

(1 + gy)
t , INV

∗
t =

INVt

(1 + gy)
t ,

where CONSt and INVt are the raw data on consumption and investment, and CONS∗t

and INV ∗t denote the data with the trend growth rate removed.

4.2 Initial conditions

I estimate the model under four di�erent cases for how expectations are formed. Case 1 is

rational expectations, and the other cases are learning with di�erent assumptions for initial

expectations and what explanatory variables agents use to make their least squares forecasts.

Case 2 can be viewed as the closest to rational expectations. Agents learn according to

constant gain least squares, but the initial values for the learning matrices Φ and R are

equal to the rational expectations solution. Furthermore, agents have the same information

as agents with rational expectations, which means they include realizations of structural

shocks among the other explanatory variables. When the constant learning gain is equal to

zero, Case 2 is equivalent to Case 1.

Case 3 makes another incremental step away from rational expectations. Agents again

learn according to constant gain least squares, and their initial conditions for the learning

matrices are equal to the rational expectations values, but agents are not able to collect data

on past shocks in order to use them as explanatory variables.

Case 4 assumes the agents have the same information set as Case 3, but the initial

conditions for the learning process matrices are di�erent from the rational expectations

solution. The initial conditions are set equal to constant gain least squares estimates from

pre-sample data. This is similar to how Milani (2007) initializes the learning matrices, but

he uses estimates from a �rst order vector autoregression using ordinary least squares, which

is consistent instead with a decreasing learning gain. In this paper, the initial conditions for

the learning process are consistent with the constant learning gain which is estimated jointly
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with the other parameters of the model.

Equations (28) and (29) describe the least squares learning process with any given learn-

ing gain, gt. When the learning gain is constant, repeated substitution of these equations

can show that the coe�cient matrix is given by,

Φt =

(
t−1∑
τ=0

(1− g)tXt−τX
′
t−τ

)−1 (t−1∑
τ=0

(1− g)tXt−τY
′
t−τ

)
(34)

In the New Keynesian model with �rm-speci�c capital, Y ′t = [ĉt−1 k̂t−1 πt−1 r̂t−1], and

X ′t = [1 ĉt−2 k̂t−2 πt−2 r̂t−2]. In this speci�cation of the model, some of the data agents use

are not directly observed by the econometrician. Consumption is expressed as percentage

deviations from the steady state, and capital stock is not directly observable. For a given

estimate of the consumption to output ratio and the steady state level of output, pre-sample

data on aggregate consumption is put in terms of the percentage deviation from the steady

state according to,

ĉt =
CONS∗t − cyy∗

cyy∗
, (35)

where cy is the steady consumption to output ratio, one of the New Keynesian model pa-

rameters to be estimated, and y∗ is the steady state level of output which will be calibrated,

as discussed in the next subsection.

The in�ation rate is directly observable by the econometrician, but to make solving the

New Keynesian model tractable, it was assumed in Section 2 that the steady state in�ation

rate is equal to zero. Since this is unlikely to be the case in the data, let π∗ denote the

annualized steady state in�ation rate, expressed as a percentage. Let INFt denote the

annualized quarterly in�ation rate measured from CPI data. This data is mapped to pre-

sample data for πt according to,

πt =
1

400
(INFt − π∗) . (36)

The steady state in�ation rate, π∗, will also be calibrated as discussed in the next section.
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The interest rate in the model is also expressed as a deviation from its steady state. The

steady state real gross interest rate in the New Keynesian model is given by β−1. Let r∗

denote the annualized quarterly steady state interest rate so that r∗ = 400(β−1 − 1). Let

FFt denote data on the annualized quarterly federal funds Rate. Pre-sample data on the

federal funds rate can therefore be transformed to pre-sample data for agents according to

r̂t =
1

400
(FFt − r∗ − π∗) . (37)

Data for the U.S. capital stock is di�cult to measure, but using the New Keynesian

model, data for percentage deviation of capital from its steady state level can be composed

from data on the deviation of investment from its steady state level. Recall equation (15)

describes the evolution of the capital stock in terms of the percentage deviation from the

steady state:

k̂t+1 = (1− δ)k̂t + δÎt + δι̂t. (38)

For a given initial value for k̂t in the pre-sample, a simulated path for the investment shock,

ι̂t, and pre-sample data on the percentage deviation of investment from the steady state,

Ît, a pre-sample series of k̂t can be constructed. Investment in the model is expressed as a

percentage deviation from its steady state. Similar to consumption data, pre-sample data

on gross private domestic investment can be transformed to pre-sample data for Ît according

to,

Ît =
INV ∗t − (1− cy)y∗

(1− cy)y∗
, (39)

where (1− cy)y∗ is the steady state level of investment.

I suppose at the beginning of the pre-sample capital is equal to its steady state value so

that the pre-sample initial value for k̂t is set equal to zero. The investment shock series is

generated equation (18) given the variance of the investment shock, σ2
ι , which is estimated

along with the rest of the parameters of the model in the maximum likelihood procedure.

Pre-sample quarterly data is collected for 1954:Q3 through 1969:Q4 and is transformed

to pre-sample data for ĉt, k̂t, πt, and r̂t according to equations (35), (36), (37), (38), (18),
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and (39). The initial condition for Φ0 is then computed using equation for the weighted least

squares procedure, equation (34).

4.3 Maximum Likelihood Procedure

I estimate the model by maximum likelihood following the Kalman �lter procedure outlined

in chapter 13 of Hamilton (1994). This procedure involves rewriting the model into state

space form. The state equation is a linear equation describing the entire New Keynesian

model including the learning mechanism. The equations governing the state are the actual

law of motion for xt, given in equation (33), and the evolution of the structural shocks given

in equation (25). Equation (33) can be rewritten more compactly as,

xt = bt + Ftxt−1 +Mtvt, (40)

where vector bt and matrices Ft and Mt are given by,

bt = Ω−1
0 Ω2

(
I + Ĝt

)
ĝ0,t,

Ft = Ω−1
0

(
Ω1 + Ω2Ĝ

2
t

)
,

Mt = Ω−1
0

[
Ψ + Ω2

(
ĜtĤt + ĤtA

)]
This equation can be combined with equation (25) into the single state equation,

x∗t = b∗t + F ∗t x
∗
t−1 + ε∗t , (41)

where x∗t = [x′t v
′
t]
′ and,

F ∗t =

 Ft MtA

0 A

 ,

b∗t =

 bt

0

 ,
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ε∗t =

 Mtεt

εt

 .
The variance of ε∗t is given by,

V ar(ε∗t ) =

 MtΣM
′
t MtΣ

ΣM ′
t Σ

 ,
where Σ is a diagonal matrix with the variance of the structural shocks along the diagonal.

The observations equations are given by,

CONS∗t = cyy
∗ + cyy

∗ĉt

INV ∗t = (1− cy)y∗ + (1− cy)y∗Ît
INFt = π∗ + 400πt

FFt = π∗ + 400 (rn + r̂t) ,

(42)

The likelihood is maximized with respect to the following vector of parameters,

Θ2 = [η σ µ cy φ γ ρr ψy ψπ ρz ρι ρξ σz σι σξ σr g].

Several parameters are calibrated instead of estimated. The discount factor, β, is set equal

to 0.9925 which corresponds to a steady state real interest rate approximately equal to 3%.

The depreciation rate, δ, is set equal to 0.025 which corresponds to an approximate annual

depreciation rate of 10%.

The steady state level of in�ation, π∗, is set equal to 3.67, the average in�ation rate over

the entire pre-sample and sample period. The steady state level of output y∗ is set equal to

the average of CONS∗t + INV ∗t over the sample and pre-sample period, which is computed

to be y∗ = 14, 355. This is the average de-trended estimate for real per-capita output, when

considering only investment and consumption and ignoring other spending that contributes

to real GDP such as government spending and net exports.

Preliminary estimation results led to unreasonably low values for κ, the slope on the
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Phillips curve that depends on the degree of price �exibility, and α, the capital-share of

income. Ireland (2004b) also reports di�culty in obtaining sensible estimates for the Phillips

curve slope using maximum likelihood, calibrates this parameter to κ = 0.1. Smets and

Wouters (2005) in very rich New Keynesian with capital accumulation report di�culty in

estimating the capital-share of income and calibrate it to α = 0.24. I follow each of these

papers and use the calibrations.

Finally, data on total hours of labor is not used in the estimation procedure, so the labor

supply shock µ̂t is suppressed, which leaves ρµ and σµ out of the estimation.

5 Results

5.1 Parameter Estimates

The parameter estimates for the four cases for expectations formation are given in Table 1.

In this subsection I look at each case in turn.

Case 1: Rational Expectations

The �rst two columns of Table 1 show the parameter results for rational expectations. The

parameter estimates for the sources of persistence are markedly low. The estimate for degree

of habit formation is η = 0.1060, the estimate for the degree of price indexation is γ = 0.3624,

and the estimate of the degree of monetary policy persistence is ρr = 0.1945. These are quite

small compared to much of the empirical literature for dynamic macroeconomic models. For

example, for U.S. data, Smets and Wouters (2005) �nd a degree of habit formation equal to

0.69 and a degree of price indexation equal to 0.66. Milani (2007) also predicts signi�cant

degrees for these sources of persistence, but only when estimating his model under rational

expectations.

Some empirical work �nds similar evidence for weak sources of persistence. Ireland

(2004b) estimates by maximum likelihood a three equation New Keynesian model that is

augmented with sources of persistence for output and in�ation and �nds estimates of these
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parameters statistically insigni�cantly di�erent from zero. Cogley and Sbordone (2005)

estimate the Phillips curve side of the model and �nd a median estimate for the degree of

in�ation indexation equal to zero. Despite the weak evidence for persistence from habit

formation and price indexation, the persistence in the structural shocks in the model are all

very signi�cant. All these estimates are in excess of 0.9, and strongly signi�cantly di�erent

from zero.

The estimated intertemporal elasticity of substitution is approximately equal to σ =

0.1603, which is rather small compared to other �ndings. For example, Smets and Wouters

(2005) estimate the inverse elasticity equal to 1.62, implying the elasticity is approximately

0.61. Giannoni and Woodford (2003) �nd a similar estimate of 0.66. The estimate of this

parameter may depend crucially on the assumed expectations mechanism since it measures

the response of current period consumption decisions to changes in the expected real interest

rate. This matter is further examined with Cases 2, 3 and 4 below.

The point estimate for the inverse elasticity of labor supply is approximately µ = 30.67

which implies labor supply is very inelastic. One place in the model this parameter enters is

in the evolution of capital stock implied by the optimal investment decision, given in equation

(17). This equation illustrates that large values for µ imply relatively small responses in kt+1,

and therefore current period's optimal choice for investment, to changes in expectations for

future output and future technology shocks. Due to the relationship of this parameter and

expectations, the estimate of this parameter is also possibly dependent on the assumed

expectations mechanism.

The estimate for the cost of capital adjustment is equal to 7.68. This is relatively close

to the �nding in Smets and Wouters (2005) and the calibration used in Woodford (2005).

Dividing every term in equation (17) illustrates that this parameter also measures how

responsive investment decisions are to changes in expectations. The larger is the cost of

adjusting capital, the less responsive is investment to changes in expected output, expected

technology shocks, and expected investment shocks.

Finally the monetary policy parameters indicate a strong response of the Federal Funds
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rate to expected in�ation, ψπ = 2.1212, and virtually no response to the deviation of ex-

pected output from its steady state, ψy = 0.0000. The more than one-to-one response of the

Federal Funds rate to in�ation is a common �nding in the literature using data during the

Volcker-Greenspan period after 1982. Lubik and Schorfheide (2004) �nd evidence that the

response was smaller before this period, but since the sample period for this paper begins in

1970, most of the sample is data from a period where U.S. monetary policy is widely viewed

as aggressively targeting in�ation to promote macroeconomic stability. The absent response

to output is somewhat di�erent than what is found in the literature. Smets and Wouters

(2005) use a more rich speci�cation for the Taylor rule and �nd a similar weak response to

current output, but a stronger response to lagged output.

Case 2: Learning with RE Initial Conditions

The next two columns of Table 1 show the results for learning when agents expectations

at the beginning of the sample are set equal to the rational expectations solution, and agents

use data on all the shocks to form their expectations, which is the same information set for

rational expectations. Rational expectations is the special case when the learning gain, g, is

equal to zero.

The point estimate for the learning gain for Case 2 is 0.0240 and is statistically signif-

icantly di�erent from zero, which implies signi�cant statistical evidence to reject the null

hypothesis that expectations are rational. This is close to commonly calibrated values in

the learning literature, for example Primiceri (2006) uses a calibration equal to 0.015 and

Orphanides and Williams (2005b) uses a value of 0.05. This is also very close to Milani's

(2007) estimate of 0.018.

While constant gain learning implies that agents use weighted least squares with a pos-

sibly inde�nitely large sample, Evans and Honkapohja (2001) and Sargent (1999) among

others have suggested that constant gain learning should closely resemble learning with or-

dinary least squares in which agents use a rolling window of approximately 1/g observations,

since the additional weight given to a new observation in such a framework is also constant
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and equal to g. With this interpretation of the learning gain, the parameter estimate implies

that agents look at data from the last 41.6 quarters, or almost 10.5 years.

Three parameter estimates, those for the intertemporal elasticity of substitution (σ),

the inverse elasticity of labor supply (µ), and the cost of capital adjustment (φ), are very

di�erent from Case 1. All these parameters move in the direction that causes consumption

and investment decisions to be less responsive to changes in expectations. The estimate for

the intertemporal elasticity of substitution is approximately σ = 0.0513 which is about one

third the size of the estimate under rational expectations. This implies that learning leads

to the prediction that consumption decisions are less responsive to changes in the expected

real interest rate.

The estimate for the inverse elasticity of labor supply is µ = 0.0499, markedly di�erent

from the estimate under rational expectations. This implies a very elastic labor supply, and

therefore a much smaller response in investment decisions to changes in expected future

output and technology shocks. The direction for this di�erent �nding is intuitive. Given

the �nding that learning models predict agents decisions are less responsive to changes in

expectations, changes in investment decisions will be less responsive if labor supply is elastic,

since then �rms can respond by changing their hiring decisions with relatively small changes

in the real wage.

The estimated cost of capital adjustment is approximately φ = 24.8826, much higher

than predicted by rational expectations. Since adjusting capital is relatively more expensive,

investment decisions are less responsive to changes in expectations about output, technology

shocks, and investment shocks.

Finally, this learning framework implies a lesser monetary policy response to expected

in�ation, and a larger response to expected output. The �nding that monetary policy is

more responsive to output in the learning framework is related to Smets and Wouters (2005)

�nding that monetary policy responds more to lagged output than concurrent output. Mc-

Callum (1997) also argues that it is more realistic to suppose the monetary authority only

has information on lagged output. Under learning, agents collect information up through
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the previous period, therefore expectations of future output depend completely on past data

of output, not on current realizations.

Case 3: Learning with RE Initial Conditions and Unobservable Shocks

The next two columns of Table 1 show the estimation results when agents learn, but with

a more limited information set than Cases 1 and 2. In Case 3 agents do not collect data on

past realizations of structural shocks to use for explanatory variables in their forecasts. For

the �rst period in the sample, the coe�cients on the remaining explanatory variables are

initialized to the rational expectations solution.

The estimate for the learning gain is approximately 0.0236 and is again statistically sig-

ni�cantly di�erent from zero. This does not imply a formal rejection of rational expectations

as before, since the rational expectations framework is no longer a special case, but it does

imply statistical evidence that expectations are adaptive. The estimate for the learning gain

implies that agents use approximately 42.4 past quarters of data to form their expectations,

or about 10.5 years.

Some notable di�erences in the estimates from the previous expectations frameworks

again include the intertemporal elasticity of substitution, the inverse elasticity of labor sup-

ply, and cost of adjusting capital. The intertemporal elasticity of substitution is even smaller

than the previous two cases, which means this framework for learning predicts an even smaller

response of consumption decisions to changes in the expected real interest rate.

The estimate for the inverse of labor supply is µ = 2.0877 which implies labor is inelas-

tic. This is still far below the estimate under rational expectations, but much larger than

the estimate under the learning framework in case 2. Therefore when not supposing that

agents observe structural shocks to form their expectations, investment decisions are more

sensitive to changes in expected future output relative to when agents do collect data on

structural shocks. When agents only use past data on observable macroeconomic variables,

current period shocks have no in�uence on expectations, so agents forecasts should be less

volatile. Given a less volatile series for expectations, it is expected that an equivalent change
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in expectations should have a larger impact on agents' decisions than with more volatile

expectations that is predicted when agents do observe shocks. Such an explanation is con-

sistent with the larger estimate for µ, but possibly contradicts the �nding that the estimate

for σ is smaller. The estimate for the standard deviation of the preference shock is much

higher in Case 3 than Cases 1 and 2. This causes consumption decisions to be more volatile

which likely in�uences the estimate for the intertemporal elasticity of substitution.

The estimate for the cost of adjusting capital is approximately φ = 26.83, which is not

signi�cantly di�erent than under case 2, but still signi�cantly greater than the estimate un-

der rational expectations.

Case 4: Learning with Pre-Sample Initial Conditions

The �nal learning framework assumes agents have the same information set as Case

3, but initial conditions for the learning matrices are set equal to weighted least squares

estimates obtained from pre-sample data. The estimate for the learning gain is approxi-

mately g = 0.0381, which is slightly larger than the previous estimates. This again suggests

statistical evidence than expectations are adaptive. This estimate implies that agents use

approximately 26.25 quarters, or about 6.5 years, of past data to form their forecasts.

The estimate for the elasticity of substitution is approximately σ = 0.1220 which is

not very di�erent than predicted under rational expectations. However, the estimate for

elasticity of labor supply and cost of adjusting capital tell a similar story as Case 2. Relative

to rational expectations, this framework for learning implies investment decisions are much

less responsive to changes in expectations for future output.

5.2 Performance Comparison

The top part of Table 2 reports the in-sample root mean squared error (RMSE) of the resid-

uals, that is the one-period ahead forecast errors for consumption, investment, in�ation, and

the federal funds rate. The table shows no clear improvement in performance by including

learning in the model. The expectations framework that best described consumption and
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in�ation is the learning model with observable shocks. The framework that best describes

investment is the learning model with unobservable shocks. The framework that best de-

scribes the federal funds rate is rational expectations, yet the RMSE for the federal funds

rate is very close across the �rst three cases. Case 4, learning with initial expectations based

on pre-sample data, is the worst performing model for consumption, investment, and the

federal funds rate; and is the second worst performing model for the in�ation rate.

The bottom part of Table 2 shows the �rst-order autocorrelation for the squared residu-

als. If the New Keynesian model is correctly speci�ed, and accurately captures the run-up

of macroeconomic volatility in the 1970s and the subsequent decline after 1982, one would

expect no autocorrelation in the residuals. Cases 1, 2, and 3 show autocorrelation insignif-

icantly di�erent from zero for the volatility in consumption and investment residuals. This

suggests the New Keynesian model with �rm-speci�c capital can adequately explain the

dynamics of these variables under learning or rational expectations. However, in Cases 1,

2, and 3, the autocorrelation for the volatility in the in�ation rate and federal funds rate

residuals are signi�cantly positive, which implies the models do not accurately capture the

changing volatility in the data for in�ation or monetary policy.

These results �ip for Case 4. Here there is insigni�cant autocorrelation in the volatility

for in�ation and the federal funds rate residuals, but a higher degree of autocorrelation for

the volatility of consumption and investment residuals.

To better understand the relative performance of each expectations framework over the

sample period, Figure 1 shows the plots the each series of forecast errors. Periods of recession

in U.S. history are shaded. The number in parentheses is the correlation of the series of

forecast errors of the respective learning model with the series predicted under rational

expectations. The forecast errors for all four variables for Cases 2 and 3 are highly correlated

with rational expectations. The largest forecast errors are made during the 1970s and early

1980s, a period many agree was marked by excessive macroeconomic volatility. The largest

forecast errors for the federal funds rate are made just after 1980 when Paul Volcker became

chairman of the Federal Reserve and began to aggressively counter-act very high levels of
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in�ation.

The forecast errors under Case 4 are signi�cantly less correlated with the rational expec-

tations case, but it tells the same qualitative story. The model makes the largest forecast

errors for consumption, investment, and in�ation during the 1970s and early 1980s.

To get a further understanding of the relative performance of each model I next examine

how they compare in out-of-sample extended forecasts. To do this I �rst estimate the model

using the sub-sample 1970:Q1 through 1989:Q4, then use this set of parameters to make

out-of-sample extended forecasts for forecast horizons 1 period ahead through 12 periods

ahead for the remainder of the sample, 1990:Q1 through 2008:Q1. Figure 2 shows the

RMSE's for consumption, investment, in�ation and the federal funds rate for each of the

four expectations frameworks. The horizontal axis is the forecast horizon and the vertical

axis is the root mean squared error. The vertical axis is logarithmic in order for the RMSE's

for each expectations framework to show nicely on each graph.

The results from Figure 2 show the rational expectations model performs nearly as well

out-of-sample as most of the learning models. The worst performing model for investment,

in�ation, and the federal funds rate is Case 2, the learning model arguably closest to ra-

tional expectations. Recall, in this framework agents include data on structural shocks to

form their forecasts, and expectations at the beginning of the sample are set equal to the

rational expectations solution. In this framework the learning matrices, Φt and Rt evolve

with realizations of the shock processes. Under rational expectations, agents expectations

also depend on structural shocks, but the learning matrices are constant throughout time,

equal to the rational expectations solution. Out-of-sample forecasts for the structural shocks

generate imprecise forecasts for the learning matrices, and therefore poor out-of-sample fore-

casts. This result would not be expected for a learning gain very close to zero. If the learning

gain were very small, the learning gain matrices would be very slow to evolve.
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5.3 Structural Shocks

Despite the similar performance of the four models for in-sample and out-of-sample forecast

errors, the choice for how expectations are formed makes a di�erence for predictions for

the structural shocks. Figures 3, 4, 5, and 6 show the impulse responses to consumption,

investment, in�ation, and the interest rate for each shock under each of the expectations

frameworks.

Impulse responses for learning models depend on the values of the learning matrices Φt

and Rt at the time of the impulse. The impulse response functions computed in this paper

are for the state of the learning matrices at the �rst quarter of 2008, the last period of the

sample. If the learning matrices are not equal to the rational expectations solution, then

even in the absence of shocks the state variables evolve as expectations converge to the

rational expectations solution. Therefore, to expose only the impact of the shocks, the plots

in Figures 3, 4, 5, and 6 show the di�erence between the evolution of the variables after the

shock and the evolution the variables would take in the absence of any shocks.

The �gures show persistent impacts on consumption, investment, and the interest rate

from preference, technology, and investment shocks under rational expectations. In Case

2 the shocks cause large, long lasting, oscillatory e�ects on investment, in�ation, and the

interest rate. This oscillatory behavior is likely what causes the large out-of-sample forecast

errors for Case 2. The �gures show when expectations are initialized based on pre-sample

data (Case 4), the responses to the four shocks also cycle back and forth but are much more

jagged, more volatile, but shorter lasting.

When agents do have data on structural shocks, the e�ects of structural shocks can have

opposite impacts as when agents do observe structural shocks. For example, the �rst and

second rows of Figure 3 show when there is a positive preference shock and agents can

observe the shock, and therefore recognize that it is temporary, the interest rate increases in

response to the increase in consumption and investment decreases. In Case 3 where agents

learn and do not observe the shock, the increase in consumption demand causes agents to

expect permanently higher consumption and therefore increase investment.
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Figure 5 shows when there is a positive investment shock, in Case 2 there is an increase

in investment demand as agents expect investment to be more productive. In Case 3, agents

cannot view the shock and so do not initially expect investment to be more productive. The

shock does cause an unexpected increase in the capital stock which decreases the marginal

product of capital and therefore decreases the demand for investment.

Figure 6 shows the impact of a contractionary monetary policy shock. In Cases 1 and 2

when agents observe the monetary policy shock, the demand for consumption and investment

decrease. When agents do not observe the shock, the stochastic behavior of the interest rate

causes agents to alter their expectations for the behavior of monetary policy. The supply

for output increases causing an increase in consumption and investment and a decrease in

in�ation. The negative response to in�ation then causes the monetary authority to actually

decrease the interest rate after the initial positive shock.

To understand how these impulse responses in�uence the predictions of the model, Figure

7 shows the smoothed estimates4 for the evolution of the structural shocks over the sample

period. Again, periods of U.S. recession are shaded and the number in parentheses is the cor-

relation of each shock with the prediction under rational expectations. The evolution of the

preference shock under Cases 1, 2, and 3 are all very similar. In each of these cases the pref-

erence shock is near is lowest during the 1980 and 1981 recessions. Other than this instance,

the preference shock seems to have little correlation with onset of recessions. The same is

not true for Case 4. The preference shock under Case 4 is completely uncorrelated with

the prediction under rational expectations, and shows only small dips during recessionary

periods.

The evolution of the technology shocks in Cases 3 and 4 are highly correlated with the

rational expectations prediction, but the Case 2 evolution of technology shocks is completely

uncorrelated. Recall from Figure 4 that in Case 2, technology shocks cause long-lived oscilla-

tory behavior in consumption, investment, and in�ation, whereas under rational expectations

and Case 3, the responses of these variables are in one direction and long lived. Despite the

4Kalman �lter smoothing is computed using the techniques described in de Jong (1989).
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lack of correlation in the technology shock in Case 2, all cases have a similar qualitative

story. All recessionary periods are marked by low realization of the technology shock. The

di�erence in Case 2 is that the drop in the technology shock actually precedes the recessions,

instead of dropping during the recessions as in other cases. In fact from 1980 through 1982

the technology shock is actually recovering in Case 2, but remaining low in all the other

frameworks.

The evolution of the investment shock is very di�erent among the four cases. Under

rational expectations, the recessions in the early 1980s are characterized by large positive

investment shocks. Recall from Figure 5 that a positive investment shock under rational

expectations causes a negative response to consumption and a positive response to invest-

ment, in�ation, and the interest rate. These responses are consistent with the United States

experience during the late 1970s and early 1980s, a period marked by high unemployment

and high in�ation, and a time when the Federal Reserve began to drastically increase the

federal funds rate in response to high in�ation. The same is not true for Case 2. Figure

5 shows that consumption responds positively to an investment shock, the initial positive

response to investment is much larger, and the responses to investment and in�ation are

shorter lived. The evolution of the investment shock therefore looks somewhat di�erent over

the sample period. The investment shock still reaches peaks during this time, but it is not

as dramatic as under rational expectations.

The evolution of the investment shock in Cases 3 and 4 are similar to each other, but

very di�erent from Cases 1 and 2. Here the recessions in the early 1980s are characterized

by negative investment shocks. When agents do not use structural shocks to form their

expectations, Figure 5 shows that positive investment shocks lead to a drop in in�ation,

a sustained positive response to consumption, and a fall in the interest rate. The early

1980s were instead characterized by decreases in consumption and increases in interest rates,

therefore, the investment shock falls during this period, which is the opposite of the �nding

in Cases 1 and 2.
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6 Conclusion

Constant gain learning is found to not signi�cantly out-perform rational expectations in the

context of a standard Keynesian model that is extended to account for endogenous �rm-

speci�c capital accumulation. Three di�erent learning frameworks are examined that di�er

based on the initial conditions for agents' expectations and the information set available to

agents when making their forecasts. The models are estimated by maximum likelihood and

the results indicate that learning provides minimal to no improvement in the �t of the model

to U.S. data. When the learning procedure is initialized using least squares estimation results

from pre-sample data, the model actually performs the worst as measured by in-sample

forecast errors. Out-of-sample extended forecast errors show the worse performing model

is the learning framework in which agents do have information on all structural shocks and

expectations at the beginning of the sample are set equal to rational expectations. Despite

the mixed results for the �t for the various models to the data, this paper does �nd a constant

learning gain statistically signi�cantly di�erent from zero in all cases, which implies statistical

evidence that expectations are not rational and are adaptive.

Impulse response functions and smoothed estimates of the structural shocks reveal that

each expectations framework provides very di�erent explanations for the impacts a struc-

tural shock can have and therefore each model predicts di�erent evolutions for the structural

shocks over the sample period. The impulse response functions show when agents learn and

have data on structural shocks, there can be long-lived oscillatory e�ects on consumption,

investment, and in�ation. When agents do not observe the structural shocks, some of the

impulse responses are reversed. These di�erent responses to structural shocks lead to di�er-

ent evolutions for the structural shocks over the sample period, especially for the technology

and investment shocks.
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A Derivation of New Keynesian model

A.1 Consumers

Consumers choose consumption, ct, labor supply, nt(i), and purchases of bonds, bt(i), to

maximize utility, given in equation (1), subject to the budget constraint, given in equation

(2). The �rst order conditions are,

λt = ξt (ct − ηct−1)
− 1
σ − βηEtξt+1 (ct+1 − ηct)−

1
σ

µtnt(i)
µ = λt

wt(i)

pt

λt = βEtλt+1
1 + rt

1 + πt+1

where λt is the Lagrange multiplier for the budget constraint and therefore the marginal

utility of real income. Log-linearizing the �rst order conditions yields,

λ̂t =
1

σ(1− βη)(1− η)

[
βηEtĉt+1 − (1 + βη2)ĉt + ηĉt−1

]
+
(
ξ̂t − βηEtξ̂t+1

)
(43)

ŵt(i)− p̂t = µn̂t(i)− λ̂t + µ̂t (44)

λ̂t = Etλ̂t+1 + r̂t − Etπt+1 (45)

where a hat indicates the percentage deviation of the variable from its steady state. Equation

(44) will be referenced later to express equilibrium real wages in terms of employment. Equa-

tions (45) and (43) together implicitly de�ne the log-linear Euler equation which determines

consumers' demand for �nal goods.
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A.2 Producers

A.2.1 Final goods �rms

The �nal goods �rm chooses its demand for intermediate good i to maximize pro�ts,

Πt = pt

[∫ 1

0
yt(i)

θ−1
θ di

] θ
θ−1

−
∫ 1

0
pt(i)yt(i)di

The �rst order condition leads to the demand for intermediate good i,

yt(i) =

[
pt(i)

pt

]−θ
yt. (46)

which is given in equation (7).

A.2.2 Input choices

Intermediate goods �rms choose labor demand and rent capital to minimize real total cost,

given in equation (10), subject to the production function, given in equation (9). The �rst

order conditions are,
wt(i)

pt
= (1− α)st(i)

yt(i)

nt(i)
, (47)

ρt(i) = αst(i)
yt(i)

kt(i)
, (48)

where st(i) is the Lagrange multiplier on the production function. The Lagrange multiplier

is interpreted as the change in the objective function from a marginal ease in the constraint.

In this case the objective function is total cost and the constraint is total output, so the

Lagrange multiplier is equal to the marginal cost.

Log-linearizing the �rst order conditions yields,

ρ̂t(i) = ŝt(i) + ŷt(i)− k̂t(i), (49)

ŵt(i)− p̂t = ŝt(i) + ŷt(i)− n̂t(i), (50)
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Combining these two equations to eliminate ŝt(i) and substituting equation (44) to eliminate

wages and prices leads to the expression for the rental rate of capital,

ρ̂t(i) = (µ+ 1) n̂t(i)− k̂t(i)− λ̂t + µ̂t. (51)

The production function can now be used to express the rental rate of capital only in terms

of output and capital. The log-linear production function is given by,

ŷt(i) = ẑt + αk̂t(i) + (1− α)n̂t(i). (52)

Solving equation (52) for n̂t(i) and substituting this into (51) yields,

ρ̂t(i) =
µ+ 1

1− α
ŷt(i)−

1 + µα

1− α
k̂t(i)− λ̂t + µ̂t −

µ+ 1

1− α
ẑt (53)

Solving equation (49) for ŝt(i) and using equation (53) to substitute out ρ̂t(i) leads to the

expression for marginal cost for �rm i,

ŝt(i) =
α + µ

1− α
ŷt(i)−

1 + αµ

1− α
k̂t(i)− λ̂t + µ̂t −

µ+ 1

1− α
ẑt (54)

Summing over all the �rms leads to the average marginal cost in the economy,

ŝt =
α + µ

1− α
ŷt −

α(µ+ 1)

1− α
k̂t − λ̂t + µ̂t −

µ+ 1

1− α
ẑt (55)

Subtracting equation (55) from equation (54), leads to an expression for the marginal cost of

�rm i in terms of the average marginal cost and the �rms relative output and capital stock,

ŝt(i) = ŝt +
α + µ

1− α
[ŷt(i)− ŷt]−

α + µ

1− α
k̃t(i) (56)

where k̃t(i) = k̂t(i)− k̂t is the relative capital stock of �rm i.
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A.2.3 Capital goods �rms

Capital goods �rms maximize the utility value of pro�ts, given in equation (16), subject

to the evolution of �rm-speci�c capital stock, given in equation (14). Instead of explicitly

computing the pro�t maximizing choice of investment, one can solve the evolution of capital

for It(i) and substitute this into the objective function. The �rst order condition is,

λt
ιt

[
1 + φ

(
kt+1(i)

kt(i)
− 1

)]
=

βEt
λt+1

ιt+1

ιt+1ρt+1(i) + (1− δ) + φ

(
kt+2(i)

kt+1(i)
− 1

)
kt+2(i)

kt+1(i)
− φ

2

(
kt+2(i)

kt+1(i)
− 1

)2
 .

(57)

Log-linearizing this yields,

λ̂t + φ
(
k̂t+1(i)− k̂t(i)

)
= Etλ̂t+1 + [1− β (1− δ)]Etρ̂t+1(i)

+βφ
(
Etk̂t+2(i)− k̂t+1(i)

)
+ ι̂t − β(1− δ)Etι̂t+1.

(58)

Plugging equation (53) into (58) leads to the following equilibrium condition for the evolution

of capital stock for �rm i:

λ̂t + φ
(
k̂t+1(i)− k̂t(i)

)
= β(1− δ)Etλ̂t+1

+

(
1− β (1− δ)

1− α

) [
(µ+ 1)Etŷt+1(i)− (1 + µα)k̂t+1(i)

]
+ βφ

(
Etk̂t+2(i)− k̂t+1(i)

)

+ [1− β(1− δ)]Etµ̂t+1 −
(µ+ 1) [1− β (1− δ)]

1− α
Etẑt+1 + ι̂t − β(1− δ)Etι̂t+1.

(59)
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Integrating equation (59) over all �rms leads to the evolution of the aggregate capital stock,

λ̂t + φ
(
k̂t+1 − k̂t

)
= β(1− δ)Etλ̂t+1 +

(
1− β (1− δ)

1− α

) [
(µ+ 1)Etŷt+1 − (1 + µα)k̂t+1

]

+βφ
(
Etk̂t+2 − k̂t+1

)
− (µ+ 1) [1− β (1− δ)]

1− α
Etẑt+1 + ι̂t − β(1− δ)Etι̂t+1

+ [1− β(1− δ)]Etµ̂t+1,

(60)

which is shown in equation (17) of the paper. Subtracting equation (60) from equation (59)

leads to following expression for �rm i's capital stock in terms of the aggregate capital stock,

φ
(
k̃t+1(i)− k̃t(i)

)
= βφ

(
Etk̃t+2(i)− k̃t+1(i)

)

+

[
1− β (1− δ)

1− α

] [
(µ+ 1)Et (ŷt+1(i)− ŷt+1)− (1 + µα)k̃t+1(i)

]
.

(61)

A.2.4 Optimal pricing

The in�ation indexation rule given in equation (20) can be re-written so that future prices

intermediate goods �rms will charge while not being able to re-optimize their price can be

expressed in terms of the price chosen by the �rm at time t. By repeated substitution of

equation (20), the price at time t+ T of good i can be expressed as,

pt+T (i) = pt(i) exp

(
γ
T−1∑
τ=0

πt+τ

)
,

For notational convenience, let π∗t+T ≡
∑T−1
τ=0 πt+τ . Substitute the demand equation, (7), into

the pro�t function, (19), to express the pro�t only in terms of the intermediate good price,

pt(i), and aggregate state variables the �rm cannot control:

Et
∞∑
T=0

(ωβ)T
λt+T
λt


(
pt(i)e

γπ∗t+T

pt+T

)1−θ

yt+T − S

(pt(i)eγπ∗t+T
pt+T

)−θ
yt+T

 . (62)
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The �rst order condition with respect to pt(i) is given by,

Et
∞∑
T=0

(ωβ)T
λt+T
λt

(1− θ)
(
p∗t (i)e

γπ∗t+T

pt+T

)1−θ

+ θst+T (i)

(
p∗t (i)e

γπ∗t+T

pt+T

)−θ yt+T
p∗t (i)

= 0, (63)

where p∗t (i) is the optimal price for a �rm that is able to re-optimize its price. Since the �rst

order condition cannot be rewritten in terms of in�ation instead of prices, it is necessary to

assume prices have a steady state, which implies the steady state level of in�ation is equal

to zero. Before log-linearizing, it is convenient to rearrange equation (63) as,

(1− θ)Et
∞∑
T=0

(ωβ)T λt+T

(
p∗t (i)e

γπ∗t+T

pt+T

)1−θ

yt+T =

−θEt
∞∑
T=0

(ωβ)T λt+T st+T (i)

(
p∗t (i)e

γπ∗t+T

pt+T

)−θ
yt+T ,

(64)

then log-linearize each side of the equal sign separately. Log-linearizing the left hand side

and right hand size, respectively, yield,

(1− θ)λyEt
∞∑
T=0

(ωβ)T
[
λ̂t+T + ŷt+T + (1− θ)

(
p̂∗t (i)− p̂t+T + γπ∗t+T

)]
, (65)

−θλysEt
∞∑
T=0

(ωβ)T
[
λ̂t+T + ŷt+T + ŝt+T − θ

(
p̂∗t (i)− p̂t+T + γπ∗t+T

)]
(66)

where λ is the steady state marginal utility of income, y is the steady state level of output,

and s is the steady state marginal cost. Steady state marginal utility and steady output

cancel out from the left and right hand sides. The steady state marginal cost is found by

evaluating the �rst order condition (63) where λt = λ and p∗t (i) = pt = p for all t. In the

steady state equation (63) simpli�es to,

(
1

1− ωβ

)
(1− θ + θs) y

p
= 0.
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The steady state solution for s is given by,

s = −1− θ
θ

. (67)

The coe�cient −θ s in equation (66) therefore cancels out with 1 − θ in equation (65).

Combining the left and right hand side then yields,

Et
∞∑
T=0

(ωβ)T
[
p̂∗t (i)− p̂t+T + γπ∗t+T − ŝt+T (i)

]
= 0 (68)

Solving for p̂∗t (i) yields,

p̂∗t (i) = (1− ωβ)Et
∞∑
T=0

(ωβ)T
[
p̂t+T − γπ∗t+T + ŝt+T (i)

]
. (69)

Substitute into equation (69), the log-linearized the demand for intermediate good i at time

t+ T , which is given by,

ŷt+T (i) = −θ(p̂∗t (i)− p̂t+T + γπ∗t+T ) + ŷt+T (70)

and the marginal cost given in equation (56). This leads to an expression for the optimal

price for �rm i in terms of aggregate variables and the �rm's expected future capital,

p̂∗t (i) = (1− ωβ)Et
∞∑
T=0

(ωβ)T
{
p̂t+T − γπ∗t+T + ŝt+T −

θ (α + µ)

1− α
[
p̂∗t (i)− p̂t+T + γπ∗t+T

]}

− (1− ωβ)Et
∞∑
T=0

(ωβ)T
{
α (µ+ 1)

1− α
k̃t+T (i)

}
.

(71)

The solution of this equation for p̂∗t (i) is given by,

p̂∗t (i) = (1− ωβ)Et
∞∑
T=0

(ωβ)T
[
p̂t+T − γπ∗t+T + ψŝt+T −

ψα(µ+ 1)

1− α
k̃t+T (i)

]
, (72)
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where

ψ =

[
1 +

θ(α + µ)

1− α

]−1

.

Equation (72) can be rewritten as the �rst order di�erence equation:

p̂∗t (i) = ωβEtp̂
∗
t+1(i) + (1− ωβ)

(
p̂t + ψŝt −

ψα(µ+ 1)

µ(1− α)
k̃t(i)

)
, (73)

where Etp̂
∗
t+1(i) denotes the expectation at time t for the time t+ 1 optimal decision for the

�rm's new price, conditional that the �rm is able to re-optimize its price again in period

t + 1. Note, this is not the same as the unconditional time t expectation of the �rm's price

in period t + 1. Since with probability ω the �rm will not be able to re-optimize its price

next period, the unconditional expectation for �rm i's price in period t+ 1 is given by,

Etp̂t+1(i) = ω [p̂∗t (i) + γπt−1] + (1− ω)Etp̂
∗
t+1(i). (74)

A.2.5 Phillips Curve Solution

Deriving the Phillips curve when there is �rm-speci�c capital is substantially more compli-

cated than a model without capital or with a perfect capital rental market. Equation (73)

shows that each �rm's optimal price will depend on its capital stock relative to the aggregate

capital stock. Since a �rm's capital stock is dependent on its entire investment history, the

optimal price will depend on the �rm's entire history of being able to re-optimize its price.

The convenient result from the previous section that each �rm will choose the same price

does not hold when there is �rm-speci�c capital and Calvo pricing.

Equation (71) implicitly de�nes the optimal choice for the price of intermediate good i

in terms of expectations of aggregate variables and the following expectation of the �rm's

future relative capital stocks:

Et
∞∑
T=0

(ωβ)T k̃t+T (i) (75)

To derive the Phillips curve, we must rewrite the above expression in terms of the �rm's

current capital stock, the current optimal price, and expectations of aggregate variables.
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The optimal choice for k̃t+1(i) in terms of expected future output is given in equation (61).

Substituting the log-linear demand for yt+1(i) into equation (61) leads to,

φ
(
k̃t+1(i)− k̃t(i)

)
= βφ

(
Etk̃t+2(i)− k̃t+1(i)

)

−
[

1− β (1− δ)
1− α

] [
θ(µ+ 1)Etp̃t+1(i)− (1 + µα)k̃t+1(i)

]
.

(76)

where p̃t+1(i) = p̂t+1(i)− p̂t+1 is the relative price of intermediate good i in period t+ 1. The

rational expectations solution for (76) must have the form,

k̃t+1(i) = mk̃t(i) + np̃t(i), (77)

where m and n are determined by the method of undetermined coe�cients in the next

subsection. For a �rm re-optimizing their price, this equation can be rewritten as

k̃t+1(i) = mk̃t(i) + np̂∗t (i)− np̂t(i). (78)

Substituting this into equation (75) shows that,

Et
∞∑
T=0

(ωβ)T k̃t+T+1(i) = mEt
∞∑
T=0

(ωβ)T k̃t+T (i) +
n

1− ωβ
p̂∗t (i)− nEt

∞∑
T=0

(ωβ)T p̂t+T .

Multiply both sides of this equation by (ωβ) then add k̃t(i) to both sides in order to make

the summation on the left hand side identical to the summation on the right hand side.

Doing this yields,

Et
∞∑
T=0

(ωβ)T k̃t+T (i) = ωβmEt
∞∑
T=0

(ωβ)T k̃t+T (i)+
ωβn

1− ωβ
p̂∗t (i)−ωβnEt

∞∑
T=0

(ωβ)T p̂t+T+k̃t(i).

Solving this equation yields,

Et
∞∑
T=0

(ωβ)T k̃t+T (i) =
1

1− ωβm

[
ωβn

1− ωβ
p̂∗t (i) + k̃t(i)− ωβnEt

∞∑
T=0

(ωβ)T p̂t+T

]
. (79)
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Substituting this into equation (71) and solving for p̂∗t (i) leads to the following solution,

p̂∗t (i) = (1− ωβ)Et
∞∑
T=0

(ωβ)T
(
p̂t+T − γπ∗t+T + νŝt+T

)
− αν(µ+ 1)(1− ωβ)

(1− α)(1− ωβm)
k̃t(i), (80)

where,

ν =

[
1 +

θ(α + µ)

1− α
+

αωβn(µ+ 1)

(1− α)(1− ωβm)

]
.

Equation (80) expresses the optimal price of intermediate good i solely in terms of aggregate

variables and the �rm's current relative capital stock. Since the capital stock was chosen in

the previous period, it is independent of whether or not a �rm is currently able to re-optimize

its price. Therefore the average capital stock among �rms re-optimizing their price is equal

to the average capital stock in the economy. This implies that average value for k̃t(i) over

�rms re-optimizing their price is equal to zero. Let p̂∗t denote the average price among these

�rms. Equation (80) implies,

p̂∗t = (1− ωβ)Et
∞∑
T=0

(ωβ)T
(
p̂t+T − γπ∗t+T + νŝt+T

)
. (81)

This can be rewritten as the �rst order di�erence equation,

p̂∗t = ωβEtp̂
∗
t+1 + (1− ωβ) (p̂t + νŝt) . (82)

Substituting equation (81) into (82) to eliminate p̂∗t and Etp̂
∗
t+1 leads to the Phillips curve,

πt =

(
1

1 + βγ

)
[γπt−1 + βEtπt+1 + κŝt] , (83)

where,

κ =
(1− ω)(1− ωβ)

νω
.
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A.2.6 Method of Undetermined Coe�cients

This subsection uses the method of undetermined coe�cients to compute the values ofm and

n in equation (78) which must satisfy the optimality condition for capital given in equation

(76). Equation (76) can be rearranged as,

k̃t+1(i) = k̃t(i) + βEtk̃t+2(i)− ζ0Etp̃t+1(i)− ζ1k̃t+1(i), (84)

where ζ0 and ζ1 are given by,

ζ0 =
θ (µ+ 1) [1− β (1− δ)]

φ (1− α)

ζ1 = β +
(1 + αµ) [1− β (1− δ)]

φ (1− α)

I begin by �nding an expression for Etp̃t+1(i) in terms of k̃t(i) and p̃t(i). Using equation

(74), the expected relative price can be rewritten as,

Etp̃t+1(i) = Etp̂t+1(i)− Etp̂t+1 = ωp̂t(i) + (1− ω)Etp̂
∗
t+1(i)− Etp̂t+1 (85)

In order to express p̃t+1(i) only in terms of p̃t(i) and k̃t(i), we must next �nd a solution for

p̂∗t (i). According to equation (73), the rational expectation solution for p̂∗t (i) must take the

form,

p̂∗t (i) = f(p̂t, ŝt) + ak̃t(i), (86)

where f(·) is a linear function of aggregate variables and a needs to be determined by the

method of undetermined coe�cients. Let Lt denote the set of �rms re-optimizing their price

in period t. The average price of the �rms who are able to re-optimize their price is given

by,

p̂∗t =
1

1− ω

∫
i∈Lt

p̂∗t (i)di = f(p̂t, ŝt) +
a

1− ω

∫
i∈Lt

k̃t(i)di

Since k̃t(i) was chosen in period t − 1, it is independent of whether a �rm is re-optimizing
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its price. Therefore the average di�erence between a �rm's capital stock and the aggregate

capital stock among �rms re-optimizing their price is equal to zero. Therefore,

p̂∗t = f(p̂t, ŝt),

and equation (86) can be rewritten as,

p̂∗t (i) = p̂∗t + ak̃t(i). (87)

Advancing equation (87) one period and taking expectations yields,

Etp̂
∗
t+1(i) = Etp̂

∗
t+1 + ak̃t+1(i), (88)

where Etp̂
∗
t+1 is the expected average price over �rms that can re-optimize their price next

period. This can be rewritten in terms of the expected aggregate price level. Since a fraction

ω �rms will not be able to change their price next period and the remaining 1−ω �rms will

have an average price p̂∗t+1, the expected price level next period is given by,

Etp̂t+1 = ωp̂t + (1− ω)Etp̂
∗
t+1. (89)

Solving (89) for Etp̂
∗
t+1 and substituting this expression into (88) leads to,

Etp̂
∗
t+1(i) =

1

1− ω
(Etp̂t+1 − ωp̂t) + ak̃t+1(i). (90)

Substituting equation (78) for k̃t+1(i) yields,

Etp̂
∗
t+1(i) =

1

1− ω
(Etp̂t+1 − ωp̂t) + amk̃t(i)− anp̃t(i). (91)

Plugging this into equation (85) leads to an expression for Etp̃t+1(i) in terms of p̃t(i) and
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k̃t(i),

Etp̃t+1(i) = [ω + (1− ω) an] p̃t(i) + (1− ω) amk̃t(i) (92)

Next, using equation (78), the expected future capital stock is given by,

Etk̃t+2(i) = m2k̃t(i) +mnp̃t(i) + nEtp̃t+1(i) (93)

Substituting equation (92) into equation (93) leads to an expression for Etk̃t+2(i) in terms

of p̃t(i) and k̃t(i),

Etk̃t+2(i) =
[
m2 + amn (1− ω)

]
k̃t(i) +

[
mn+ nω + an2(1− ω)

]
p̃t(i) (94)

Plugging in equations (92), (93), and (78) into (84) leads to an expression for capital of the

form given in equation (78) where m and n must satisfy, respectively,

βm2 + [βan(1− ω)− ζ1 − ζ0a(1− ω)− 1]m+ 1 = 0, (95)

βa(1− ω)n2 + [βm+ βω − ζ1 − ζ0a(1− ω)− 1]n− ζ0ω = 0. (96)

All that remains is to �nd an expression for a, also using the method of undetermined

coe�cients. Substituting the expression for Etp̂
∗
t+1(i) given in equation (91) into equation

(73) and solving for p̂∗t (i) yields,

p̂∗t (i) =
1

1− ωβan

(
ωβam− ψα (µ+ 1)

(1− α)

)
k̃t(i)

+
ωβ

(1− ω) (1− ωβan)
(Etp̂t+1 − ωp̂t) + p̂t +

ψ

1− ωβan
ŝt,

(97)

which implies a must satisfy the quadratic equation,

ωβna2 + (ωβm− 1) a− αψ(µ+ 1)

1− α
= 0. (98)
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Equations (95), (96), and (98) make up a system of quadratic equations that jointly

determine the values for m, n, and a in terms of the parameters of the model. Since this

is a system of three quadratic equations, there are potentially eight solutions, but these

equations alone do not rule out economically infeasible outcomes. Equations (77) and (92)

can be rewritten as the following dynamic system:

 k̃t+1(i)

Etp̃t+1(i)

 =

 m n

ω + (1− ω)an 1− ω


 k̃t(i)

p̃t(i)

 . (99)

The economically feasible solution for m, n, and a must be consistent with stable means

and variances of each �rm's relative capital stock and relative price. The system is stable

if and only if the eigenvalues of the matrix in equation (99) are inside the unit circle. The

eigenvalues are given by,

e1 =
1

2

(
m+ ω + (1− ω)an+

√
[m+ ω + (1− ω)an]2 − 4mω

)

e2 =
1

2

(
m+ ω + (1− ω)an−

√
[m+ ω + (1− ω)an]2 − 4mω

)
It is evident from these equations that e1 > e2. Therefore both eigenvalues will be less than

1 in absolute value if and only if e1 < 1 and e2 > −1. The condition on the �rst eigenvalue

implies, √
[m+ ω + (1− ω)an]2 − 4mω < 2−m− ω − (1− ω)an. (100)

Since the left hand side of the inequality is always positive, the left hand side must also be

positive. Therefore, squaring both sides preserves the direction of the inequality. Doing this

yields,

[m+ ω + (1− ω)an]2 − 4mω < 4− 4 [m+ ω + (1− ω)an] + 4 [m+ ω + (1− ω)an]2 (101)

This inequality does not preserve the restriction implied in (100) that the right hand side be
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positive. Therefore (100) also implies

2−m− ω − (1− ω)an > 0. (102)

The inequalities (101) and (102) simplify to, respectively,

m < 1− an (103)

m < 1 + (1− ω)(1− an) (104)

The stability condition for the second eigenvalue is,

√
[m+ ω + (1− ω)an]2 − 4mω < 2 +m+ ω + (1− ω)an,

which simpli�es to,

m > −1− 1− ω
1 + ω

an (105)

Finally, the coe�cients m, n, and a can be found by the solving the system of quadratic

equations (95), (96), and (98), subject to the inequalities (103), (104), and (105).

A.3 Market clearing

Goods market clearing implies total output of the �nal good is equal to aggregate consump-

tion plus aggregate investment,

yt = ct + It.

Log-linearizing this yields,

ŷt = cy ĉt + δky Ît, (106)

where cy is the steady state consumption to output ratio and ky is the steady state capital

to output ratio. The steady state capital to output ratio is found by combining the steady

state �rst order condition for capital rental, given in equation (48), and the steady state
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�rst order condition for investment, given in equation (57). Evaluating equation (48) at the

steady state and using the steady state marginal cost, given in equation (67), yields,

ρ = α
θ − 1

θ

(
y

k

)
.

Evaluating equation (57) at the steady state yields,

1 = β (ρ+ 1− δ) .

Combining these equations to eliminate ρ leads to the following capital to output ratio,

ky =
βα(θ − 1)

θ (1− β + βδ)
(107)

Evaluating the goods market clearing condition, (106), at the steady state yields the following

consumption to output ratio,

cy = 1− δky. (108)
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Figure 1: Forecast Errors

Case 1: Rational Expectations
Consumption Investment In�ation Fed Funds

Case 2: Learing with RE Initial Conditions
Consumption (0.9467) Investment (0.8525) In�ation (0.9235) Fed Funds (0.9512)

Case 3: Learing with RE Initial Conditions, Shocks Unobservable
Consumption (0.9922) Investment (0.8598) In�ation (0.6517) Fed Funds (0.9474)

Case 4: Learning with Unobservable Shocks and Pre-Sample Initial Conditions
Consumption (0.7003) Investment (0.4776) In�ation (0.6457) Fed Funds (0.6882)
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Figure 2: Out of Sample Multiperiod Forecast Errors

Consumption Investment

In�ation Federal Funds Rate
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Figure 3: Preference Shock Impulse Responses

Case 1: Rational Expectations
Consumption Investment In�ation Interest Rate

Case 2: Learning with RE Initial Conditions
Consumption Investment In�ation Interest Rate

Case 3: Learning with Unobservable Shocks and RE Initial Conditions
Consumption Investment In�ation Interest Rate

Case 4: Learning with Unobservable Shocks and Pre-Sample Initial Conditions
Consumption Investment In�ation Interest Rate
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Figure 4: Technology Shock Impulse Responses

Case 1: Rational Expectations
Consumption Investment In�ation Interest Rate

Case 2: Learning with RE Initial Conditions
Consumption Investment In�ation Interest Rate

Case 3: Learning with Unobservable Shocks and RE Initial Conditions
Consumption Investment In�ation Interest Rate

Case 4: Learning with Unobservable Shocks and Pre-Sample Initial Conditions
Consumption Investment In�ation Interest Rate
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Figure 5: Investment Shock Impulse Responses

Case 1: Rational Expectations
Consumption Investment In�ation Interest Rate

Case 2: Learning with RE Initial Conditions
Consumption Investment In�ation Interest Rate

Case 3: Learning with Unobservable Shocks and RE Initial Conditions
Consumption Investment In�ation Interest Rate

Case 4: Learning with Unobservable Shocks and Pre-Sample Initial Conditions
Consumption Investment In�ation Interest Rate
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Figure 6: Monetary Policy Shock Impulse Responses

Case 1: Rational Expectations
Consumption Investment In�ation Interest Rate

Case 2: Learning with RE Initial Conditions
Consumption Investment In�ation Interest Rate

Case 3: Learning with Unobservable Shocks and RE Initial Conditions
Consumption Investment In�ation Interest Rate

Case 4: Learning with Unobservable Shocks and Pre-Sample Initial Conditions
Consumption Investment In�ation Interest Rate
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Figure 7: Smoothed Estimates of Structural Shocks

Case 1: Rational Expectations
Preference Technology Investment Monetary Policy

Case 2: Learning with RE Initial Conditions
Preference (0.8708) Technology (0.0826) Investment (0.5076) Monetary Policy (0.7246)

Case 3: Learning with Unobservable Shocks and RE Initial Conditions
Preference (0.8301) Technology (0.7917) Investment (-0.1270) Monetary Policy (0.2623)

Case 4: Learning with Unobservable Shocks and Pre-Sample Initial Conditions
Preference (-0.0413) Technology (0.7501) Investment (-0.0976) Monetary Policy (0.4380)
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Table 2: Model Fit Comparisons

Root Mean Squared Error
Case 1 Case 2 Case 3 Case 4

Consumption 110.6570 87.6595 106.8923 143.3313
Investment 99.9744 105.0477 87.0809 132.0726
In�ation 2.6073 2.4222 3.1500 2.9596
Federal Funds Rate 1.3661 1.3930 1.3714 1.9271

Autocorrelation Squared Error
Case 1 Case 2 Case 3 Case 4

Consumption -0.0048 0.0385 -0.0179 0.4449
Investment 0.0695 0.0925 -0.0297 0.3853
In�ation 0.2563 0.1517 0.4053 0.1026
Federal Funds Rate 0.4491 0.3866 0.3717 0.0304


